cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A083345 Numerator of r(n) = Sum(e/p: n=Product(p^e)); a(n) = n' / gcd(n,n'), where n' is the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 3, 2, 7, 1, 4, 1, 9, 8, 2, 1, 7, 1, 6, 10, 13, 1, 11, 2, 15, 1, 8, 1, 31, 1, 5, 14, 19, 12, 5, 1, 21, 16, 17, 1, 41, 1, 12, 13, 25, 1, 7, 2, 9, 20, 14, 1, 3, 16, 23, 22, 31, 1, 23, 1, 33, 17, 3, 18, 61, 1, 18, 26, 59, 1, 13, 1, 39, 11, 20, 18, 71, 1, 11, 4, 43, 1, 31, 22
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2003

Keywords

Comments

Least common multiple of n and its arithmetic derivative, divided by n, i.e. a(n) = lcm(n,n')/n = A086130(n)/A000027(n). - Giorgio Balzarotti, Apr 14 2011
From Antti Karttunen, Nov 12 2024: (Start)
Positions of multiples of any natural number in this sequence (like A369002, A369644, A369005, or A369007) form always a multiplicative semigroup: if m and n are in that sequence, then so is m*n.
Proof: a(x) = x' / gcd(x,x') = A003415(x) / A085731(x) by definition. Let v_p(x) be the p-adic valuation of x, with p prime. Let e = v_p(c), the p-adic valuation of natural number c whose multiples we are searching for. For v_p(a(x)) >= e > 0 and v_p(a(y)) >= e > 0 to hold we must have v_p(x') = v_p(x)+h and v_p(y') = v_p(y)+k, for some h >= e, k >= e for p^e to divide a(x) and a(y).
Then, as a(xy) = (xy)' / gcd(xy,(xy)') = (x'y + y'x) / gcd(xy, (x'y + y'x)), we have, for the top side, v_p((xy)') = min(v_p(x')+v_p(y), v_p(y')+v_p(x)) = min(v_p(x) + h + v_p(y), v_p(y) + k + v_p(x)) = v_p(xy) + min(h,k), and for the bottom side we get v_p(gcd(xy, (x'y + y'x))) = min(v_p(xy), v_p(xy) + min(h,k)) = v_p(xy), so v_p(a(xy)) = min(h,k) >= e, thus p^e | a(xy). For a composite c that is not a prime power, c | a(xy) holds if the above equations hold for all p^e || c.
(End)

Examples

			Fractions begin with 0, 1/2, 1/3, 1, 1/5, 5/6, 1/7, 3/2, 2/3, 7/10, 1/11, 4/3, ...
For n = 12, 2*2*3 = 2^2 * 3^1 --> r(12) = 2/2 + 1/3 = (6+2)/6, therefore a(12) = 4, A083346(12) = 3.
For n = 18, 2*3*3 = 2^1 * 3^2 --> r(18) = 1/2 + 2/3 = (3+4)/6, therefore a(18) = 7, A083346(18) = 6.
		

Crossrefs

Cf. A369001 (anti-parity), A377874 (parity).
Cf. A369002 (positions of even terms), A369003 (of odd terms), A369644 (of multiples of 3), A369005 (of multiples of 4), A373265 (of terms of the form 4m+2), A369007 (of multiples of 27), A369008, A369068 (Möbius transform), A369069.

Programs

  • Mathematica
    Array[Numerator@ Total[FactorInteger[#] /. {p_, e_} /; e > 0 :> e/p] - Boole[# == 1] &, 85] (* Michael De Vlieger, Feb 25 2018 *)
  • PARI
    A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~,i,f[i,2]/f[i,1]))); }; \\ Antti Karttunen, Feb 25 2018

Formula

The fraction a(n)/A083346(n) is totally additive with a(p) = 1/p. - Franklin T. Adams-Watters, May 17 2006
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A083346(k) = Sum_{p prime} 1/(p*(p-1)) = 0.773156... (A136141). - Amiram Eldar, Sep 29 2023
a(n) = A003415(n) / A085731(n) = A342001(n) / A369008(n). - Antti Karttunen, Jan 16 2024

Extensions

Secondary definition added by Antti Karttunen, Nov 12 2024

A381588 If n = Product (p_j^k_j) then a(n) = Product (lcm(p_j, k_j)), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 6, 6, 10, 11, 6, 13, 14, 15, 4, 17, 12, 19, 10, 21, 22, 23, 18, 10, 26, 3, 14, 29, 30, 31, 10, 33, 34, 35, 12, 37, 38, 39, 30, 41, 42, 43, 22, 30, 46, 47, 12, 14, 20, 51, 26, 53, 6, 55, 42, 57, 58, 59, 30, 61, 62, 42, 6, 65, 66, 67, 34, 69, 70, 71
Offset: 1

Views

Author

Paolo Xausa, Feb 28 2025

Keywords

Examples

			a(18) = 12 because 18 = 2^1*3^2, lcm(2,1) = 2, lcm(3,2) = 6 and 2*6 = 12.
a(300) = 30 because 300 = 2^2*3^1*5^2, lcm(2,2) = 2, lcm(3,1) = 3, lcm(5,2) = 10 and 2*3*10 = 60.
		

Crossrefs

Cf. A008473, A008477, A035306, A144338 (fixed points), A369008 (analogous for gcd).

Programs

  • Mathematica
    A381588[n_] := Times @@ LCM @@@ FactorInteger[n];
    Array[A381588, 100]
  • PARI
    a(n) = my(f=factor(n)); prod(i=1, #f~, lcm(f[i,1], f[i,2])); \\ Michel Marcus, Mar 02 2025

Formula

a(p) = p, for p prime.

A369009 a(n) = A342001(n) - A083345(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 2, 8, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 7, 0, 0, 0, 14, 0, 6, 0, 0, 0, 0, 0, 23, 0, 0, 0, 3, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 11, 0, 0, 0, 31, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 10
Offset: 1

Views

Author

Antti Karttunen, Jan 14 2024

Keywords

Comments

Arithmetic derivative of n without its "inherited divisor" minus the arithmetic derivative of n without its greatest common divisor with n.

Crossrefs

Cf. A342090 (positions of terms > 0).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A369009(n) = { my(u=A003415(n)); (u/A003557(n))-(u/gcd(n,u)); };

A381613 If n = Product (p_j^k_j) then a(n) = Product (min(p_j, k_j)), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Paolo Xausa, Mar 01 2025

Keywords

Comments

First differs from A323308 at n = 27.

Examples

			a(18) = 2 because 18 = 2^1*3^2, min(2,1) = 1, min(3,2) = 2 and 1*2 = 2.
a(300) = 4 because 300 = 2^2*3^1*5^2, min(2,2) = 2, min(3,1) = 1, min(5,2) = 2 and 2*1*2 = 4.
		

Crossrefs

Programs

  • Mathematica
    A381613[n_] := Times @@ Min @@@ FactorInteger[n];
    Array[A381613, 100]
  • PARI
    a(n) = my(f=factor(n)); prod(i=1, #f~, min(f[i,1], f[i,2])); \\ Michel Marcus, Mar 02 2025

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (1/p - 1/p^p)/(p-1)) = 1.59383299054679951264... . - Amiram Eldar, Mar 07 2025

A381614 If n = Product (p_j^k_j) then a(n) = Product (max(p_j, k_j)), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 3, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 9, 5, 26, 3, 14, 29, 30, 31, 5, 33, 34, 35, 6, 37, 38, 39, 15, 41, 42, 43, 22, 15, 46, 47, 12, 7, 10, 51, 26, 53, 6, 55, 21, 57, 58, 59, 30, 61, 62, 21, 6, 65, 66, 67, 34, 69, 70, 71, 9, 73
Offset: 1

Views

Author

Paolo Xausa, Mar 01 2025

Keywords

Examples

			a(18) = 6 because 18 = 2^1*3^2, max(2,1) = 2, max(3,2) = 3 and 2*3 = 6.
a(300) = 30 because 300 = 2^2*3^1*5^2, max(2,2) = 2, max(3,1) = 3, max(5,2) = 5 and 2*3*5 = 30.
		

Crossrefs

Programs

  • Mathematica
    A381614[n_] := Times @@ Max @@@ FactorInteger[n];
    Array[A381614, 100]
  • PARI
    a(n) = my(f=factor(n)); prod(i=1, #f~, max(f[i,1], f[i,2])); \\ Michel Marcus, Mar 02 2025

Formula

a(p) = p, for p prime.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065463 * Product_{p prime} (1 + 1/((p^2-1)*(p^2+p-1)*p^(2*p-2))) = 0.71628338157754073004... . - Amiram Eldar, Mar 07 2025
Showing 1-5 of 5 results.