cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A109937 Number of consecutive composite numbers in successive consecutive number sets in A109936; (smallest (n+1)-digit prime) - (largest n-digit prime) - 1.

Original entry on oeis.org

3, 3, 11, 33, 11, 19, 27, 17, 69, 51, 25, 49, 65, 57, 47, 123, 5, 13, 89, 49, 217, 35, 139, 263, 135, 207, 201, 539, 345, 67, 59, 69, 69, 603, 91, 225, 123, 191, 59, 137, 227, 145, 137, 83, 17, 153, 73, 225, 65, 207, 443, 557, 347, 321, 131, 595, 371, 307, 159, 167
Offset: 1

Views

Author

Amarnath Murthy, Jul 19 2005

Keywords

Crossrefs

Cf. A109936.

Programs

Formula

a(n) = A038804(n)-1. - R. J. Mathar, Feb 08 2008

Extensions

More terms from R. J. Mathar, Feb 08 2008

A133836 Largest prime with number of decimal digits equal to n-th prime.

Original entry on oeis.org

97, 997, 99991, 9999991, 99999999977, 9999999999971, 99999999999999997, 9999999999999999961, 99999999999999999999977, 99999999999999999999999999973, 9999999999999999999999999999973
Offset: 1

Views

Author

Parthasarathy Nambi, Jan 06 2008

Keywords

Examples

			97 is the largest prime with 2 digits.
997 is the largest prime with 3 digits.
99991 is the largest prime with 5 digits.
		

Crossrefs

Programs

Formula

a(n)=A003618(A000040(n)). - R. J. Mathar, Jan 30 2008

Extensions

More terms from R. J. Mathar, Jan 30 2008

A180927 Largest n-digit number that is divisible by exactly 3 primes (counted with multiplicity).

Original entry on oeis.org

8, 99, 994, 9994, 99997, 999994, 9999994, 99999994, 999999998, 9999999995, 99999999998, 999999999998, 9999999999998, 99999999999998, 999999999999995, 9999999999999998, 99999999999999998, 999999999999999987, 9999999999999999999
Offset: 1

Views

Author

Jonathan Vos Post, Jan 23 2011

Keywords

Comments

This is to 3 and A014612, as 2 and A098450 (largest n-digit semiprime), and as 1 and A003618 (largest n-digit prime). Largest n-digit triprime. Largest n-digit 3-almost prime.

Examples

			a(1) = 8 because 8 = 2^3 is the largest (only) 1-digit number that is divisible by exactly 3 primes (counted with multiplicity).
a(2) = 99 because 99 = 3^2 * 11 is the largest 2-digit number (of 21) that is divisible by exactly 3 primes (counted with multiplicity).
a(3) = 994 because 994 = 2 * 7 * 71 is the largest 3-digit number that is divisible by exactly 3 primes (counted with multiplicity).
		

Crossrefs

Programs

  • Mathematica
    lndn3[n_]:=Module[{k=10^n-1},While[PrimeOmega[k]!=3,k--];k]; Array[ lndn3,20] (* Harvey P. Dale, Jul 25 2019 *)
  • PARI
    A180927(n)=forstep(n=10^n-1,10^(n-1),-1,bigomega(n)==3&return(n)) \\ M. F. Hasler, Jan 23 2011

A185201 10^n - second largest prime less than 10^n.

Original entry on oeis.org

5, 11, 9, 33, 11, 21, 27, 29, 71, 57, 53, 39, 137, 29, 53, 83, 23, 33, 57, 27, 113, 71, 53, 303, 321, 249, 107, 261, 53, 17, 81, 119, 47, 513, 237, 179, 123, 123, 173, 27, 203, 137, 119, 77, 119, 147, 83, 47, 183, 161, 333, 339, 611, 579
Offset: 1

Views

Author

Washington Bomfim, Jan 24 2012

Keywords

Examples

			a(1) = 5 because precprime(10) = 7, and precprime(6) = 5.
From _M. F. Hasler_, Jul 19 2024: (Start)
Further examples: (where pp = prevprime = A151799)
    n |   pp(pp(10^n))  | a(n)
  ----+-----------------+------
    1 |               5 |   5
    2 |              89 |  11
    3 |             991 |   9
    4 |            9967 |  33
    5 |           99989 |  11
    6 |          999979 |  21
    7 |         9999973 |  27
    8 |        99999971 |  29
    9 |       999999929 |  71
   10 |      9999999943 |  57
   11 |     99999999947 |  53
   12 |    999999999961 |  39
   13 |   9999999999863 | 137
   14 |  99999999999971 |  29
   15 | 999999999999947 |  53
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, Second Edition, Vol. 2, Seminumerical Algorithms, Chapter 4.5.4 Factoring into Primes, Table 1, Page 390, Addison-Wesley, Reading, MA, 1981.

Crossrefs

Cf. A033874.
Cf. A003618 (largest prime < 10^n), A151799 (prevprime function).

Programs

  • Maple
    seq(10^n - prevprime(prevprime(10^n)),n=1..100); # Robert Israel, May 28 2017
  • Mathematica
    Table[10^n - NextPrime[10^n, -2], {n,1,50}] (* G. C. Greubel, Jun 24 2017 *)
  • PARI
    apply( {A185201(n)=10^n-precprime(precprime(10^n)-1)}, [1..66]) \\ M. F. Hasler, Jul 19 2024

Formula

a(n) = 10^n - precprime(precprime(10^n)-1)

A379140 Numbers k such that the greatest prime < 10^k and the least prime > 10^k share no decimal digits.

Original entry on oeis.org

1, 2, 8, 11, 15, 16, 17, 18, 21, 25, 26, 30, 40, 44, 46, 47, 50, 51, 53, 55, 60, 63, 64, 74, 77, 81, 86, 88, 89, 93, 95, 101, 123, 130, 131, 133, 134, 140, 152, 154, 158, 161, 164, 166, 176, 181, 189, 192, 198, 209, 214, 215, 233, 245, 264, 268, 274, 291, 293, 295, 297, 324, 326, 334, 352, 357
Offset: 1

Views

Author

Robert Israel, Dec 16 2024

Keywords

Comments

Charles R Greathouse IV conjectures that A107801(n) = prime(n) for n sufficiently large (and similarly for other related sequences). If that is the case, this sequence must be finite.

Examples

			a(3) = 8 is a term because the greatest prime < 10^8 and the least prime > 10^8 are 99999989 and 100000007 respectively, and these have no digits in common.
5 is not a term because the greatest prime < 10^5 and the least prime > 10^5 are 99991 and 100003 respectively, and these have digit 1 in common.
		

Crossrefs

Programs

  • Maple
    filter:= t -> convert(convert(prevprime(10^t),base,10),set) intersect convert(convert(nextprime(10^t),base,10),set) = {}:
    select(filter, [$1..400]);

A068694 Largest n-digit prime with all odd digits.

Original entry on oeis.org

7, 97, 997, 9973, 99991, 999979, 9999991, 99999971, 999999937, 9999999557, 99999999977, 999999999959, 9999999999971, 99999999999973, 999999999999577, 9999999999999937, 99999999999999997, 999999999999999737
Offset: 1

Views

Author

Amarnath Murthy, Mar 03 2002

Keywords

Crossrefs

Formula

a(n)<=A003618(n). - R. J. Mathar, May 18 2007

Extensions

More terms from Sascha Kurz, Mar 17 2002

A074489 n-th power of the largest n-digit prime.

Original entry on oeis.org

7, 9409, 991026973, 9892436613211441, 9995500809927103280440951, 999898004334901741252806480882137569, 9999937000170099744850229634875997137200865217031, 9999991200003387999254640102486990981144496037064410263414358881
Offset: 1

Views

Author

Zak Seidov, Sep 26 2002

Keywords

Examples

			a(1)=7^1=7, a(2)=97^2=9409, a(3)=997^3=991026973.
		

Crossrefs

Cf. A003618.

Programs

  • Mathematica
    Table[Prime[PrimePi[10^n]]^n, {n, 6}]

Formula

a(n)=A003618(n)^n. - Emeric Deutsch, Dec 14 2004

Extensions

More terms from Emeric Deutsch, Dec 14 2004

A097515 a(n) = (largest prime < 10^n) + (smallest prime > 10^n).

Original entry on oeis.org

18, 198, 2006, 19980, 199994, 1999986, 20000010, 199999996, 1999999944, 19999999986, 199999999980, 2000000000028, 20000000000008, 200000000000004, 2000000000000026, 19999999999999998, 200000000000000000, 1999999999999999992, 20000000000000000012, 200000000000000000028
Offset: 1

Views

Author

Cino Hilliard, Aug 27 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[NextPrime[10^n,-1]+NextPrime[10^n],{n,20}] (* Harvey P. Dale, May 03 2018 *)

Formula

a(n) = A003618(n) + A003617(n+1). - Amiram Eldar, Jul 02 2024

Extensions

More terms from Amiram Eldar, Jul 02 2024

A099657 a(n) is the least prime following A002277(n) repdigits.

Original entry on oeis.org

2, 5, 37, 337, 3343, 33343, 333337, 3333373, 33333347, 333333349, 3333333403, 33333333343, 333333333367, 3333333333347, 33333333333437, 333333333333389, 3333333333333343, 33333333333333391, 333333333333333391
Offset: 0

Views

Author

Labos Elemer, Nov 17 2004

Keywords

Examples

			n=3: 33 is followed by 37.
		

Crossrefs

Programs

  • Mathematica
    Table[NextPrime[3*(10^n-1)/9], {n, 0, 35}]

A099661 a(n) is the least prime following A002281(n) repdigits.

Original entry on oeis.org

2, 11, 79, 787, 7789, 77783, 777781, 7777801, 77777803, 777777799, 7777777781, 77777777827, 777777777841, 7777777777859, 77777777777837, 777777777777787, 7777777777777867, 77777777777777797, 777777777777777817
Offset: 0

Views

Author

Labos Elemer, Nov 17 2004

Keywords

Examples

			n=6: 77 is followed by 79.
		

Crossrefs

Programs

  • Mathematica
    Table[NextPrime[7*(10^n-1)/9], {n, 0, 35}]
    NextPrime/@LinearRecurrence[{11,-10},{0,7},35] (* Harvey P. Dale, Dec 12 2021 *)
Previous Showing 31-40 of 46 results. Next