A346024 Primes that are the first in a run of exactly 4 emirps.
733, 7177, 9011, 11551, 11777, 12107, 13147, 13259, 13693, 14563, 19219, 19531, 19661, 31891, 32467, 35117, 35311, 36097, 36187, 38351, 38903, 70241, 70921, 75721, 77323, 78607, 79399, 79531, 90121, 91183, 92297, 92479, 92959, 93581, 94121, 95111, 95791, 96857
Offset: 1
Examples
a(1) = 733 because of the six consecutive primes 727, 733, 739, 743, 751, 757 all except 727 and 757 are emirps and this is the first such occurrence.
Crossrefs
Programs
-
Mathematica
Select[Prime@Range@10000,Boole[PrimeQ@#&&!PalindromeQ@#&/@(IntegerReverse/@NextPrime[#,Range[-1,4]])]=={0,1,1,1,1,0}&] (* Giorgos Kalogeropoulos, Jul 04 2021 *)
-
Python
from sympy import isprime, primerange def isemirp(p): s = str(p); return s != s[::-1] and isprime(int(s[::-1])) def aupto(limit): alst, pvec, evec = [], [2, 3, 5, 7, 11, 13], [0, 0, 0, 0, 0, 0] for p in primerange(17, limit+1): if evec == [0, 1, 1, 1, 1, 0]: alst.append(pvec[1]) pvec = pvec[1:] + [p]; evec = evec[1:] + [isemirp(p)] return alst print(aupto(97000)) # Michael S. Branicky, Jul 04 2021
Comments