cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 98 results. Next

A170686 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 10. - Vincenzo Librandi, Dec 09 2012

Programs

  • Mathematica
    With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-3 t^Range[49]] + 6 t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 40}], t]] (* Vincenzo Librandi, Dec 09 2012 *)

Formula

G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(6*t^50 - 3*t^49 - 3*t^48 - 3*t^47 - 3*t^46 - 3*t^45 - 3*t^44 -
3*t^43 - 3*t^42 - 3*t^41 - 3*t^40 - 3*t^39 - 3*t^38 - 3*t^37 - 3*t^36 -
3*t^35 - 3*t^34 - 3*t^33 - 3*t^32 - 3*t^31 - 3*t^30 - 3*t^29 - 3*t^28 -
3*t^27 - 3*t^26 - 3*t^25 - 3*t^24 - 3*t^23 - 3*t^22 - 3*t^21 - 3*t^20 -
3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 -
3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3
- 3*t^2 - 3*t + 1).

A269696 Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 6", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280
Offset: 0

Views

Author

Robert Price, Mar 03 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.
Rules 38, 70, 102, 134, 166, 198 and 230 also generate this sequence.
Apparently a duplicate of A003947. - R. J. Mathar, Mar 09 2016

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A269695.

Programs

  • Mathematica
    rule=6; stages=300;
    ca=CellularAutomaton[{rule,{2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},stages]; (* Start with single black cell *)
    on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
    Part[on,2^Range[0,Log[2,stages]]] (* Extract relevant terms *)

Formula

Conjectures from Colin Barker, Mar 08 2016: (Start)
a(n) = 5*4^(n-1) for n>0.
a(n) = 4*a(n-1) for n>1.
G.f.: (1+x) / (1-4*x).
(End)

Extensions

a(9)-a(15) from Lars Blomberg, Apr 12 2016

A277451 Number of edges in geodesic dome generated from icosahedron by recursively dividing each triangle in 4.

Original entry on oeis.org

1, 30, 120, 480, 1920, 7680, 30720, 122880, 491520, 1966080, 7864320, 31457280, 125829120, 503316480, 2013265920, 8053063680, 32212254720, 128849018880, 515396075520, 2061584302080, 8246337208320, 32985348833280, 131941395333120, 527765581332480
Offset: 0

Views

Author

Jonah Caplan, Oct 16 2016

Keywords

Comments

The new triangles are generated by placing new vertices at the midpoints of each edge in the old triangle.

Examples

			n = 1 is the icosahedron with 30 sides. After dividing each face in 4, there are 120 sides in the next iteration.
		

Crossrefs

A122973 is the number of vertices, A003947 is the number of faces starting from 20.

Programs

  • Mathematica
    {1}~Join~NestList[4 # &, 30, 22] (* or *)
    CoefficientList[Series[(1 + 26 x)/(1 - 4 x), {x, 0, 23}], x] (* Michael De Vlieger, Oct 21 2016 *)
  • PARI
    Vec((1+26*x)/(1-4*x) + O(x^30)) \\ Colin Barker, Oct 20 2016
  • Python
    a = [1] + [30 * 4 ** (n-1) for n in range(1,24)]
    

Formula

a(n) = 1 if n=0, else 30*4^(n-1).
From Colin Barker, Oct 20 2016: (Start)
a(n) = 4*a(n-1) for n>1.
G.f.: (1+26*x) / (1-4*x). (End)

A287811 Number of septenary sequences of length n such that no two consecutive terms have distance 5.

Original entry on oeis.org

1, 7, 45, 291, 1881, 12159, 78597, 508059, 3284145, 21229047, 137226717, 887047443, 5733964809, 37064931183, 239591481525, 1548743682699, 10011236540769, 64713650292711, 418315611378573, 2704034619149571, 17479154549033145, 112987031151647583
Offset: 0

Views

Author

David Nacin, Jun 01 2017

Keywords

Examples

			For n=2 the a(2) = 49-4 = 45 sequences contain every combination except these four: 05, 50, 16, 61.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, 3}, {1,7}, 40]
  • Python
    def a(n):
     if n in [0, 1]:
      return [1, 7][n]
     return 6*a(n-1)-3*a(n-2)

Formula

a(n) = 6*a(n-1) + 3*a(n-2), a(0)=1, a(1)=7.
G.f.: (1 + x)/(1 - 6*x - 3*x^2).
a(n) = A090018(n-1)+A090018(n). - R. J. Mathar, Oct 20 2019

A287838 Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 8.

Original entry on oeis.org

1, 11, 115, 1205, 12625, 132275, 1385875, 14520125, 152130625, 1593906875, 16699721875, 174966753125, 1833166140625, 19206495171875, 201230782421875, 2108340300078125, 22089556912890625, 231437270629296875, 2424820490857421875, 25405391261720703125
Offset: 0

Views

Author

David Nacin, Jun 07 2017

Keywords

Comments

In general, the number of sequences on {0,1,...,10} such that no two consecutive terms have distance 6+k for k in {0,1,2,3,4} has generating function (-1 - x)/(-1 + 10*x + (2*k+1)*x^2).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, 5}, {1, 11, 115}, 20]
  • PARI
    Vec((1 + x) / (1 - 10*x - 5*x^2) + O(x^40)) \\ Colin Barker, Nov 25 2017
  • Python
    def a(n):
     if n in [0,1,2]:
      return [1, 11, 115][n]
     return 10*a(n-1) + 5*a(n-2)
    

Formula

For n > 2, a(n) = 10*a(n-1) + 5*a(n-2), a(0)=1, a(1)=11, a(2)=115.
G.f.: (-1 - x)/(-1 + 10*x + 5*x^2).
a(n) = (((5-sqrt(30))^n*(-6+sqrt(30)) + (5+sqrt(30))^n*(6+sqrt(30)))) / (2*sqrt(30)). - Colin Barker, Nov 25 2017

A162925 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 5, 20, 80, 310, 1200, 4650, 18000, 69690, 269820, 1044630, 4044420, 15658470, 60623640, 234711810, 908715240, 3518201250, 13621143060, 52735907790, 204173464860, 790482339630, 3060448278480, 11848896802170, 45874441471680
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^4 - 3*t^3 - 3*t^2 - 3*t + 1)

A164706 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81910, 327600, 1310250, 5240400, 20959200, 83827200, 335270400, 1340928000, 5363097690, 21449933820, 85789908630, 343120332420, 1372324139280, 5488667867520, 21952156999680, 87798571269120
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f.: (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).

A165185 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327670, 1310640, 5242410, 20969040, 83873760, 335485440, 1341903360, 5367459840, 21469224960, 85874442330, 343487939580, 1373912440470, 5495492494980, 21981340930320, 87922847594880
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(6*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t
+ 1)

A168874 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^21 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138870, 21990232555440, 87960930221610
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
First disagreement at index 21: a(21) = 5497558138870, A003947(21) = 5497558138880. - Klaus Brockhaus, Apr 04 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003947 (G.f.: (1+x)/(1-4*x)).

Programs

Formula

G.f.: (t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^21 - 3*t^20 - 3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).

A168922 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^22 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555510, 87960930222000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
First disagreement at index 22: a(22) = 21990232555510, A003947(22) = 21990232555520. - Klaus Brockhaus, Apr 09 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003947 (G.f.: (1+x)/(1-4*x)).

Formula

G.f.: (t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(6*t^22 - 3*t^21 - 3*t^20 - 3*t^19 - 3*t^18 - 3*t^17 - 3*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).
Previous Showing 41-50 of 98 results. Next