A163347
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 8, 56, 392, 2744, 19180, 134064, 937104, 6550320, 45786384, 320044452, 2237094216, 15637173048, 109303031880, 764022547512, 5340478146444, 37329666414768, 260932440209616, 1823904280240560, 12748996716570576
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-7*x+27*x^5-21*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-7*x+27*x^5-21*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{6,6,6,6,-21}, {1,8,56,392,2744,19180}, 30] (* G. C. Greubel, Dec 19 2016 *)
coxG[{5, 21, -6}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-7*x+27*x^5-21*x^6)) \\ G. C. Greubel, Dec 19 2016
-
((1+x)*(1-x^5)/(1-7*x+27*x^5-21*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163924
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
Original entry on oeis.org
1, 8, 56, 392, 2744, 19208, 134428, 940800, 6584256, 46080384, 322496832, 2257016832, 15795891636, 110548662840, 773682621768, 5414672451384, 37894967433288, 265210605012024, 1856095143363468, 12990012903371952
Offset: 0
-
a:=[8,56,392,2744,19208,134428];; for n in [7..30] do a[n]:=6*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -21*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-7*t+27*t^6-21*t^7) )); // G. C. Greubel, Aug 10 2019
-
seq(coeff(series((1+t)*(1-t^6)/(1-7*t+27*t^6-21*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
-
coxG[{6,21,-6}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 24 2016 *)
CoefficientList[Series[(1+t)*(1-t^6)/(1-7*t+27*t^6-21*t^7), {t,0,30}], t] (* G. C. Greubel, Aug 08 2017 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-7*t+27*t^6-21*t^7)) \\ G. C. Greubel, Aug 08 2017
-
def A163924_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-7*t+27*t^6-21*t^7)).list()
A163924_list(30) # G. C. Greubel, Aug 10 2019
A164373
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
Original entry on oeis.org
1, 8, 56, 392, 2744, 19208, 134456, 941164, 6587952, 46114320, 322790832, 2259469968, 15815828784, 110707574544, 774930433956, 5424354927432, 37969377752376, 265777897314888, 1860391054122552, 13022357800350024
Offset: 0
-
a:=[8, 56, 392, 2744, 19208, 134456, 941164];; for n in [8..30] do a[n]:=6*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -21*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Aug 28 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^7)/(1-7*t+27*t^7-21*t^8) )); // G. C. Greubel, Aug 28 2019
-
seq(coeff(series((1+t)*(1-t^7)/(1-7*t+27*t^7-21*t^8), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 28 2019
-
CoefficientList[Series[(1+t)*(1-t^7)/(1-7*t+27*t^7-21*t^8), {t, 0, 30}], t] (* G. C. Greubel, Sep 17 2017 *)
coxG[{7, 21, -6}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 28 2019 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^7)/(1-7*t+27*t^7-21*t^8)) \\ G. C. Greubel, Sep 17 2017
-
def A164373_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^7)/(1-7*t+27*t^7-21*t^8)).list()
A164373_list(30) # G. C. Greubel, Aug 28 2019
A165786
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
Original entry on oeis.org
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828828, 2259801600, 15818609856, 110730259584, 775111751232, 5425781797632, 37980469356480, 265863262906752, 1861042682227008, 13027297668747264
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6,6,6,6,6,6,6,6,6,-21).
-
a:=[8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828828];; for n in [11..20] do a[n]:=6*Sum([1..9], j-> a[n-j]) -21*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 22 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^10)/(1-7*t+27*t^10-21*t^11) )); // G. C. Greubel, Sep 22 2019
-
seq(coeff(series((1+t)*(1-t^10)/(1-7*t+27*t^10-21*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 22 2019
-
With[{num=Total[2t^Range[9]]+t^10+1,den=Total[-6 t^Range[9]]+21t^10+1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Oct 20 2011 *)
CoefficientList[Series[(1+t)*(1-t^10)/(1-7*t+27*t^10-21*t^11), {t,0,20}], t] (* or *) coxG[{10, 21, -6}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 22 2019 *)
-
my(t='t+O('t^20)); Vec((1+t)*(1-t^10)/(1-7*t+27*t^10-21*t^11)) \\ G. C. Greubel, Sep 22 2019
-
def A165786_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^10)/(1-7*t+27*t^10-21*t^11) ).list()
A165786_list(30) # G. C. Greubel, Sep 22 2019
A166366
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
Original entry on oeis.org
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828856, 2259801964, 15818613552, 110730293520, 775112045232, 5425784250768, 37980489294384, 265863421833744, 1861043930247600, 13027307353612944
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6,6,6,6,6,6,6,6,6,6,-21).
-
seq(coeff(series((1+t)*(1-t^11)/(1-7*t+27*t^11-21*t^12), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 13 2020
-
CoefficientList[Series[(1+t)*(1-t^11)/(1-7*t+27*t^11-21*t^12), {t,0,30}], t] (* G. C. Greubel, May 10 2016 *)
coxG[{11, 21, -6}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 13 2020 *)
-
def A166366_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^11)/(1-7*t+27*t^11-21*t^12) ).list()
A166366_list(30) # G. C. Greubel, Mar 13 2020
A166538
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
Original entry on oeis.org
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828856, 2259801992, 15818613916, 110730297216, 775112079168, 5425784544768, 37980491747520, 265863441771648, 1861044089174592, 13027308601633536
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6,6,6,6,6,6,6,6,6,6,6,-21).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^12)/(1-7*x+27*x^12-21*x^13) )); // G. C. Greubel, Aug 23 2024
-
CoefficientList[Series[(1+t)*(1-t^12)/(1-7*t+27*t^12-21*t^13), {t, 0, 50}], t] (* G. C. Greubel, May 16 2016; Aug 23 2024 *)
coxG[{12,21,-6}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 24 2016 *)
-
def A166538_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^12)/(1-7*x+27*x^12-21*x^13) ).list()
A166538_list(30) # G. C. Greubel, Aug 23 2024
A166910
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
Original entry on oeis.org
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828856, 2259801992, 15818613944, 110730297580, 775112082864, 5425784578704, 37980492041520, 265863444224784, 1861044109112496, 13027308760560528
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, -21).
-
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(21*t^13 - 6*t^12 - 6*t^11 - 6*t^10 - 6*t^9 - 6*t^8 - 6*t^7 - 6*t^6 - 6*t^5 - 6*t^4 - 6*t^3 - 6*t^2 - 6*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 28 2016 *)
coxG[{13,21,-6}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 05 2021 *)
A167109
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
Original entry on oeis.org
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828856, 2259801992, 15818613944, 110730297608, 775112083228, 5425784582400, 37980492075456, 265863444518784, 1861044111565632, 13027308780498432
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, -21).
-
With[{num=Total[2t^Range[13]]+t^14+1,den=Total[-6 t^Range[13]]+ 21t^14+1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jul 15 2011 *)
CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (21*t^14 - 6*t^13 - 6*t^12 - 6*t^11 - 6*t^10 - 6*t^9 - 6*t^8 - 6*t^7 - 6*t^6 - 6*t^5 - 6*t^4 - 6*t^3 - 6*t^2 - 6*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)
A167653
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
Original entry on oeis.org
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828856, 2259801992, 15818613944, 110730297608, 775112083256, 5425784582764, 37980492079152, 265863444552720, 1861044111859632, 13027308782951568
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, -21).
-
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(21*t^15 - 6*t^14 - 6*t^13 - 6*t^12 - 6*t^11 - 6*t^10 - 6*t^9 - 6*t^8 - 6*t^7 - 6*t^6 - 6*t^5 - 6*t^4 - 6*t^3 - 6*t^2 - 6*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 18 2016 *)
A167899
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828856, 2259801992, 15818613944, 110730297608, 775112083256, 5425784582792, 37980492079516, 265863444556416, 1861044111893568, 13027308783245568
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, -21).
-
CoefficientList[Series[(t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(21*t^16 - 6*t^15 - 6*t^14 - 6*t^13 - 6*t^12 - 6*t^11 - 6*t^10 - 6*t^9 - 6*t^8 - 6*t^7 - 6*t^6 - 6*t^5 - 6*t^4 - 6*t^3 - 6*t^2 - 6*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016 *)
Comments