A164779
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829645, 430466400, 3874194000, 34867713600, 313809130800, 2824279552800, 25418492355600, 228766218624000, 2058894054430380, 18530029271219040, 166770108473225760
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, 8, 8, 8, 8, 8, 8, -36).
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9) )); // G. C. Greubel, Apr 26 2019
-
coxG[{8,36,-8}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 13 2017 *)
CoefficientList[Series[(1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9), {x,0,20}], x] (* G. C. Greubel, Apr 26 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A162983
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
Original entry on oeis.org
1, 10, 90, 810, 7245, 64800, 579600, 5184000, 46366380, 414707040, 3709193760, 33175513440, 296726124240, 2653957198080, 23737339710720, 212309865780480, 1898927161041600, 16984252473131520, 151909371770042880
Offset: 0
-
a:=[10,90,810,7245];; for n in [5..20] do a[n]:=8*(a[n-1]+a[n-2] +a[n-3]) - 36*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5) )); // G. C. Greubel, Apr 28 2019
-
CoefficientList[Series[(1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5), {x,0,20}], x]
(* or *) coxG[{4, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5)) \\ G. C. Greubel, Apr 28 2019
-
((1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
A163397
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65565, 589680, 5303520, 47699280, 429001920, 3858394860, 34701968160, 312105587040, 2807042441760, 25246223065440, 227061682284240, 2042167156174080, 18367021030590720, 165190915209012480
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{8,8,8,8,-36}, {1,10,90,810,7290,65565}, 30] (* G. C. Greubel, Dec 21 2016 *)
coxG[{5, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6)) \\ G. C. Greubel, Dec 21 2016
-
((1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163954
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65610, 590445, 5313600, 47818800, 430336800, 3872739600, 34852032000, 313644670380, 2822589491040, 25401392681760, 228595320793440, 2057202978723360, 18513432737727840, 166608348947205840
Offset: 0
-
a:=[10, 90, 810, 7290, 65610, 590445];; for n in [7..30] do a[n]:=8*(a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]) -36*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-9*t+44*t^6-36*t^7) )); // G. C. Greubel, Aug 10 2019
-
seq(coeff(series((1+t)*(1-t^6)/(1-9*t+44*t^6-36*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
-
CoefficientList[Series[(1+t)*(1-t^6)/(1-9*t+44*t^6-36*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 13 2017 *)
coxG[{6, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-9*t+44*t^6-36*t^7)) \\ G. C. Greubel, Aug 13 2017
-
def A163954_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-9*t+44*t^6-36*t^7)).list()
A163954_list(30) # G. C. Greubel, Aug 10 2019
A164548
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65610, 590490, 5314365, 47828880, 430456320, 3874074480, 34866378720, 313794784080, 2824129437120, 25416952359660, 228750658083360, 2058738704511840, 18528493377756960, 166755045745830240
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30);
Coefficients(R!( (1+t)*(1-t^7)/(1 -9*t +44*t^7 -36*t^8) )); // G. C. Greubel, Jul 17 2021
-
CoefficientList[Series[(1+t)*(1-t^7)/(1 -9*t +44*t^7 -36*t^8), {t,0,30}], t] (* or *)
coxG[{7, 36, -8, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jul 17 2021 *)
-
def A168823_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^7)/(1 -9*t +44*t^7 -36*t^8) ).list()
A168823_list(30) # G. C. Greubel, Jul 17 2021
A165788
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204845, 34867843200, 313810585200, 2824295234400, 25418656818000, 228767908737600, 2058911155018800, 18530200182592800, 166771799730147600
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (8,8,8,8,8,8,8,8,8,-36).
-
a:=[10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204845];; for n in [11..20] do a[n]:=8*Sum([1..9], j-> a[n-j]) -36*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 22 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11) )); // G. C. Greubel, Sep 22 2019
-
seq(coeff(series((1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Aug 10 2019
-
CoefficientList[Series[(1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11), {t, 0, 25}], t] (* G. C. Greubel, Apr 08 2016 *)
coxG[{10, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 22 2019 *)
-
my(t='t+O('t^20)); Vec((1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11)) \\ G. C. Greubel, Sep 22 2019
-
def A165788_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11)).list()
A165788_list(20) # G. C. Greubel, Sep 22 2019
A166368
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867843965, 313810595280, 2824295353920, 25418658152880, 228767923084320, 2058911305134480, 18530201722590720, 166771815290740080
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (8,8,8,8,8,8,8,8,8,8,-36).
-
R:=PowerSeriesRing(Integers(), 30);
Coefficients(R!( (1+x)*(1-x^11)/(1-9*x+44*x^16-36*x^17) )); // G. C. Greubel, Jul 23 2024
-
seq(coeff(series((1+t)*(1-t^11)/(1-9*t+44*t^11-36*t^12), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 14 2020
-
CoefficientList[Series[(1+t)*(1-t^11)/(1-9*t+44*t^11-36*t^12), {t,0,30}], t] (* G. C. Greubel, May 10 2016 *)
coxG[{11, 36, -8}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 14 2020 *)
-
def A166368_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^11)/(1-9*t+44*t^11-36*t^12) ).list()
A166368_list(30) # G. C. Greubel, Mar 14 2020
A166543
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596045, 2824295364000, 25418658272400, 228767924419200, 2058911319481200, 18530201872706400, 166771816830738000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (8,8,8,8,8,8,8,8,8,8,8,-36).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^12)/(1-9*x+44*x^12-36*x^13) )); // G. C. Greubel, Aug 23 2024
-
CoefficientList[Series[(1+t)*(1-t^12)/(1-9*t+44*t^12-36*t^13), {t, 0, 50}], t] (* G. C. Greubel, May 16 2016; Aug 23 2024 *)
coxG[{12,36,-8,30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 23 2024 *)
-
def A166543_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^12)/(1-9*x+44*x^12-36*x^13) ).list()
A166543_list(30) # G. C. Greubel, Aug 23 2024
A166933
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364765, 25418658282480, 228767924538720, 2058911320816080, 18530201887053120, 166771816980853680
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, -36).
-
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^13 - 8*t^12 - 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 28 2016 *)
A167111
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
Original entry on oeis.org
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283245, 228767924548800, 2058911320935600, 18530201888388000, 166771816995200400
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, -36).
-
CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (36*t^14 - 8*t^13 - 8*t^12 - 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)
Comments