cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 57 results. Next

A164779 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829645, 430466400, 3874194000, 34867713600, 313809130800, 2824279552800, 25418492355600, 228766218624000, 2058894054430380, 18530029271219040, 166770108473225760
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    coxG[{8,36,-8}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 13 2017 *)
    CoefficientList[Series[(1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9), {x,0,20}], x] (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^8)/(1-9*x+44*x^8-36*x^9)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 36*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
G.f.: (1+x)*(1-x^8)/(1 -9*x +44*x^8 -36*x^9). - G. C. Greubel, Apr 26 2019

A162983 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 10, 90, 810, 7245, 64800, 579600, 5184000, 46366380, 414707040, 3709193760, 33175513440, 296726124240, 2653957198080, 23737339710720, 212309865780480, 1898927161041600, 16984252473131520, 151909371770042880
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[10,90,810,7245];; for n in [5..20] do a[n]:=8*(a[n-1]+a[n-2] +a[n-3]) - 36*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5), {x,0,20}], x]
    (* or *) coxG[{4, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5)) \\ G. C. Greubel, Apr 28 2019
    
  • Sage
    ((1+x)*(1-x^4)/(1-9*x+44*x^4-36*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 8*(a(n-1) + a(n-2) + a(n-3)) - 36*a(n-4).
G.f.: (1+x)*(1-x^4)/(1 - 9*x + 44*x^4 - 36*x^5). (End)

A163397 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65565, 589680, 5303520, 47699280, 429001920, 3858394860, 34701968160, 312105587040, 2807042441760, 25246223065440, 227061682284240, 2042167156174080, 18367021030590720, 165190915209012480
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6) )); // G. C. Greubel, May 12 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{8,8,8,8,-36}, {1,10,90,810,7290,65565}, 30] (* G. C. Greubel, Dec 21 2016 *)
    coxG[{5, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6)) \\ G. C. Greubel, Dec 21 2016
    
  • Sage
    ((1+x)*(1-x^5)/(1-9*x+44*x^5-36*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
a(n) = 8*a(n-1)+8*a(n-2)+8*a(n-3)+8*a(n-4)-36*a(n-5). - Wesley Ivan Hurt, May 10 2021

A163954 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590445, 5313600, 47818800, 430336800, 3872739600, 34852032000, 313644670380, 2822589491040, 25401392681760, 228595320793440, 2057202978723360, 18513432737727840, 166608348947205840
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[10, 90, 810, 7290, 65610, 590445];; for n in [7..30] do a[n]:=8*(a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]) -36*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-9*t+44*t^6-36*t^7) )); // G. C. Greubel, Aug 10 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^6)/(1-9*t+44*t^6-36*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^6)/(1-9*t+44*t^6-36*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 13 2017 *)
    coxG[{6, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-9*t+44*t^6-36*t^7)) \\ G. C. Greubel, Aug 13 2017
    
  • Sage
    def A163954_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^6)/(1-9*t+44*t^6-36*t^7)).list()
    A163954_list(30) # G. C. Greubel, Aug 10 2019
    

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
a(n) = -36*a(n-6) + 8*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021

A164548 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314365, 47828880, 430456320, 3874074480, 34866378720, 313794784080, 2824129437120, 25416952359660, 228750658083360, 2058738704511840, 18528493377756960, 166755045745830240
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30);
    Coefficients(R!( (1+t)*(1-t^7)/(1 -9*t +44*t^7 -36*t^8) )); // G. C. Greubel, Jul 17 2021
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^7)/(1 -9*t +44*t^7 -36*t^8), {t,0,30}], t] (* or *)
    coxG[{7, 36, -8, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jul 17 2021 *)
  • Sage
    def A168823_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^7)/(1 -9*t +44*t^7 -36*t^8) ).list()
    A168823_list(30) # G. C. Greubel, Jul 17 2021

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
G.f.: (1+t)*(1-t^7)/(1 -9*t +44*t^7 -36*t^8). - G. C. Greubel, Jul 17 2021

A165788 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204845, 34867843200, 313810585200, 2824295234400, 25418656818000, 228767908737600, 2058911155018800, 18530200182592800, 166771799730147600
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204845];; for n in [11..20] do a[n]:=8*Sum([1..9], j-> a[n-j]) -36*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 22 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11) )); // G. C. Greubel, Sep 22 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Aug 10 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11), {t, 0, 25}], t] (* G. C. Greubel, Apr 08 2016 *)
    coxG[{10, 36, -8}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 22 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11)) \\ G. C. Greubel, Sep 22 2019
    
  • Sage
    def A165788_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-9*t+44*t^10-36*t^11)).list()
    A165788_list(20) # G. C. Greubel, Sep 22 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).

A166368 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867843965, 313810595280, 2824295353920, 25418658152880, 228767923084320, 2058911305134480, 18530201722590720, 166771815290740080
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30);
    Coefficients(R!( (1+x)*(1-x^11)/(1-9*x+44*x^16-36*x^17) )); // G. C. Greubel, Jul 23 2024
  • Maple
    seq(coeff(series((1+t)*(1-t^11)/(1-9*t+44*t^11-36*t^12), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 14 2020
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^11)/(1-9*t+44*t^11-36*t^12), {t,0,30}], t] (* G. C. Greubel, May 10 2016 *)
    coxG[{11, 36, -8}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 14 2020 *)
  • Sage
    def A166368_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^11)/(1-9*t+44*t^11-36*t^12) ).list()
    A166368_list(30) # G. C. Greubel, Mar 14 2020
    

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
From G. C. Greubel, Jul 23 2024: (Start)
a(n) = 8*Sum_{j=1..10} a(n-j) - 36*a(n-11).
G.f.: (1+t)*(1 - t^11)/(1 - 9*t + 44*t^11 - 36*t^12). (End)

A166543 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596045, 2824295364000, 25418658272400, 228767924419200, 2058911319481200, 18530201872706400, 166771816830738000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^12)/(1-9*x+44*x^12-36*x^13) )); // G. C. Greubel, Aug 23 2024
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^12)/(1-9*t+44*t^12-36*t^13), {t, 0, 50}], t] (* G. C. Greubel, May 16 2016; Aug 23 2024 *)
    coxG[{12,36,-8,30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 23 2024 *)
  • SageMath
    def A166543_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^12)/(1-9*x+44*x^12-36*x^13) ).list()
    A166543_list(30) # G. C. Greubel, Aug 23 2024

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^12 - 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
From G. C. Greubel, Aug 23 2024: (Start)
a(n) = 8*Sum_{j=1..11} a(n-j) - 36*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 9*x + 44*x^12 - 36*x^13). (End)

A166933 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364765, 25418658282480, 228767924538720, 2058911320816080, 18530201887053120, 166771816980853680
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^13 - 8*t^12 - 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 28 2016 *)

Formula

G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^13 - 8*t^12 - 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).

A167111 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283245, 228767924548800, 2058911320935600, 18530201888388000, 166771816995200400
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (36*t^14 - 8*t^13 - 8*t^12 - 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)

Formula

G.f.: (t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^14 - 8*t^13 - 8*t^12 - 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
Previous Showing 11-20 of 57 results. Next