cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 102 results. Next

A349131 a(n) = Sum_{d|n} phi(d) * A003958(n/d), where A003958 is fully multiplicative with a(p) = (p-1), and phi is Euler totient function.

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 12, 8, 14, 16, 20, 16, 24, 24, 32, 16, 32, 28, 36, 32, 48, 40, 44, 32, 52, 48, 46, 48, 56, 64, 60, 32, 80, 64, 96, 56, 72, 72, 96, 64, 80, 96, 84, 80, 112, 88, 92, 64, 114, 104, 128, 96, 104, 92, 160, 96, 144, 112, 116, 128, 120, 120, 168, 64, 192, 160, 132, 128, 176, 192, 140, 112, 144, 144, 208
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Dirichlet convolution of A003958 with Euler totient function phi, A000010.
Möbius transform of A349130.

Crossrefs

Cf. A000010, A003958, A018804, A348981, A349130 (inverse Möbius transform), A349132, A349171.

Programs

  • Mathematica
    f[p_, e_] := (p - 1)*p^e - (p - 2)*(p - 1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A349131(n) = sumdiv(n,d,eulerphi(d)*A003958(n/d));

Formula

a(n) = Sum_{d|n} A000010(d) * A003958(n/d).
a(n) = Sum_{d|n} A008683(d) * A349130(n/d).
a(n) = Sum_{k=1..n} A003958(gcd(n, k)).
a(n) = A018804(n) - A348981(n).
For all n >= 1, a(n) <= A349171(n).
Multiplicative with a(p^e) = (p-1)*p^e - (p-2)*(p-1)^e. - Amiram Eldar, Nov 09 2021
Dirichlet g.f.: (zeta(s-1)/zeta(s)) / Product_{p prime} (1 - 1/p^(s-1) + 1/p^s). - Amiram Eldar, Dec 24 2023

A349132 a(n) = Sum_{d|n} psi(d) * A003958(n/d), where A003958 is fully multiplicative with a(p) = (p-1), and psi is Dedekind psi function, A001615.

Original entry on oeis.org

1, 4, 6, 10, 10, 24, 14, 22, 24, 40, 22, 60, 26, 56, 60, 46, 34, 96, 38, 100, 84, 88, 46, 132, 70, 104, 84, 140, 58, 240, 62, 94, 132, 136, 140, 240, 74, 152, 156, 220, 82, 336, 86, 220, 240, 184, 94, 276, 140, 280, 204, 260, 106, 336, 220, 308, 228, 232, 118, 600, 122, 248, 336, 190, 260, 528, 134, 340, 276, 560
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Dirichlet convolution of A003958 with Dedekind psi function, A001615.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 1)*p^e - p*(p - 1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A349132(n) = sumdiv(n,d,A001615(d)*A003958(n/d));

Formula

a(n) = Sum_{d|n} A001615(d) * A003958(n/d).
a(n) = A327251(n) - A348982(n).
For all n >= 1, a(n) <= A349172(n).
Multiplicative with a(p^e) = (p+1)*p^e - p*(p-1)^e. - Amiram Eldar, Nov 09 2021

A351445 a(n) = A003958(sigma(n)) - A003958(n), where A003958 is multiplicative with a(p^e) = (p-1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

0, 1, -1, 5, -2, 0, -5, 7, 8, 0, -8, 4, -6, -4, -6, 29, -12, 20, -14, 8, -11, -6, -20, 6, 14, 0, -4, 0, -20, -4, -29, 23, -18, -8, -22, 68, -18, -10, -18, 12, -28, -10, -32, 2, 8, -18, -44, 28, 0, 44, -28, 24, -44, 0, -36, 2, -32, -12, -50, 4, -30, -28, -12, 125, -36, -16, -50, 8, -42, -20, -66, 92, -36, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Crossrefs

Cf. A351446 (positions of zeros), A351443 (odd terms there).
Cf. also A348736.

Programs

Formula

a(n) = A351442(n) - A003958(n) = A351444(n) - n.

A353794 a(n) = A353791(sigma(A003961(n))), where A353791(n) = A003958(n) * A064989(n).

Original entry on oeis.org

1, 1, 4, 132, 1, 4, 4, 12, 870, 1, 30, 528, 16, 4, 4, 4900, 12, 870, 4, 132, 16, 30, 48, 48, 1224, 16, 528, 528, 1, 4, 306, 3960, 120, 12, 4, 114840, 120, 4, 64, 12, 70, 16, 4, 3960, 870, 48, 64, 19600, 9180, 1224, 48, 2112, 48, 528, 30, 48, 16, 1, 870, 528, 208, 306, 3480, 1191372, 16, 120, 16, 1584, 192, 4, 1116
Offset: 1

Views

Author

Antti Karttunen, May 11 2022

Keywords

Comments

It is conjectured that a(n) is not a multiple of A353793(n) on any other n except on n=1. See also A353795.

Crossrefs

Cf. A000203, A003958, A003961, A003973, A064989, A326042, A351456, A353791, A353792, A353793, A353795 [numbers k such that k divides a(k)].
Cf. also A353790.

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A353794(n) = { my(s=sigma(A003961(n))); (A003958(s)*A064989(s)); };

Formula

Multiplicative with a(p^e) = A003958(1 + q + ... + q^e) * A064989(1 + q + ... + q^e), where q is the least prime larger than p.
a(n) = A353791(A003973(n)) = A353792(A003961(n)).
a(n) = A326042(n) * A351456(n) = A064989(A003973(n)) * A003958(A003973(n)).

A340081 a(n) = gcd(n-1, A003958(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 4, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 4, 1, 22, 1, 8, 1, 2, 3, 28, 1, 30, 1, 4, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 4, 1, 46, 1, 12, 1, 2, 3, 52, 1, 2, 1, 4, 1, 58, 1, 60, 1, 2, 1, 16, 5, 66, 1, 4, 3, 70, 1, 72, 1, 2, 3, 4, 1, 78, 1, 16, 1, 82, 1, 4, 1, 2, 1, 88, 1, 18, 1, 4, 1, 2, 1, 96, 1, 2, 1, 100
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A003958(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1]--); factorback(f));
    A340081(n) = gcd(n-1, A003958(n));

Formula

a(n) = gcd(n-1, A003958(n)).
a(n) = A003958(n) / A340082(n).
For n > 1, a(n) = (n-1) / A340083(n).

A340082 a(n) = A003958(n) / gcd(n-1, A003958(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 6, 4, 1, 1, 4, 1, 4, 3, 10, 1, 2, 2, 12, 4, 2, 1, 8, 1, 1, 5, 16, 12, 4, 1, 18, 12, 4, 1, 12, 1, 10, 4, 22, 1, 2, 3, 16, 16, 4, 1, 8, 20, 6, 9, 28, 1, 8, 1, 30, 12, 1, 3, 4, 1, 16, 11, 8, 1, 4, 1, 36, 16, 6, 15, 24, 1, 4, 1, 40, 1, 12, 16, 42, 28, 10, 1, 16, 4, 22, 15, 46, 36, 2, 1, 36
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Cf. A003958, A340081, A340083, A340085 (gives the odd part).
Cf. also A160595, A340072.

Programs

  • PARI
    A003958(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1]--); factorback(f));
    A340082(n) = { my(u=A003958(n)); u/gcd(n-1, u); };

Formula

a(n) = A003958(n) / A340081(n) = A003958(n) / gcd(n-1, A003958(n)).

A349129 a(n) = Sum_{d|n} A003958(d) * A003959(n/d), where A003958 is fully multiplicative with a(p) = (p-1), and A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

1, 4, 6, 13, 10, 24, 14, 40, 28, 40, 22, 78, 26, 56, 60, 121, 34, 112, 38, 130, 84, 88, 46, 240, 76, 104, 120, 182, 58, 240, 62, 364, 132, 136, 140, 364, 74, 152, 156, 400, 82, 336, 86, 286, 280, 184, 94, 726, 148, 304, 204, 338, 106, 480, 220, 560, 228, 232, 118, 780, 122, 248, 392, 1093, 260, 528, 134, 442, 276
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Dirichlet convolution of A003958 with A003959.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((p + 1)^(e + 1) - (p - 1)^(e + 1))/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A349129(n) = sumdiv(n,d,A003958(d)*A003959(n/d));

Formula

Multiplicative with a(p^e) = ((p+1)^(e+1) - (p-1)^(e+1))/2. - Amiram Eldar, Nov 09 2021
For all n >= 1, A349130(n) <= a(n) <= A349170(n).

A349356 Dirichlet convolution of A003959 with A097945 (Dirichlet inverse of A003958), where A003958 and A003959 are fully multiplicative with a(p) = p-1 and p+1 respectively.

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 18, 8, 4, 2, 12, 2, 4, 4, 54, 2, 16, 2, 12, 4, 4, 2, 36, 12, 4, 32, 12, 2, 8, 2, 162, 4, 4, 4, 48, 2, 4, 4, 36, 2, 8, 2, 12, 16, 4, 2, 108, 16, 24, 4, 12, 2, 64, 4, 36, 4, 4, 2, 24, 2, 4, 16, 486, 4, 8, 2, 12, 4, 8, 2, 144, 2, 4, 24, 12, 4, 8, 2, 108, 128, 4, 2, 24, 4, 4, 4, 36, 2, 32, 4, 12, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2021

Keywords

Comments

In Dirichlet ring this sequence works as a kind of replacement operator which replaces the factor A003958 with factor A003959. For example, convolving this with A349133 produces A349173.

Crossrefs

Cf. A003958, A003959, A097945, A349355 (Dirichlet inverse), A349357 (sum with it).
Cf. also A349133, A349173, A349381.

Programs

  • Mathematica
    f[p_, e_] := 2*(p + 1)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A097945(n) = (moebius(n)*eulerphi(n)); \\ Also Dirichlet inverse of A003958.
    A349356(n) = sumdiv(n,d,A003959(n/d)*A097945(d));

Formula

a(n) = Sum_{d|n} A003959(n/d) * A097945(d).
Multiplicative with a(p^e) = 2*(p+1)^(e-1). - Amiram Eldar, Nov 16 2021

A351443 Odd numbers k for which A003958(sigma(k)) = A003958(k), where A003958 is multiplicative with a(p^e) = (p-1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 49, 40905, 106353, 140211, 275301, 302697, 499041, 597213, 1094913, 1284417, 1578933, 2004345, 2266137, 2560653, 3247857, 3444201, 3738717, 4425921, 5014953, 5123817, 5211297, 5407641, 5505813, 5996673, 6193017, 6870339, 7174737, 8156457, 8941833, 9432693, 9825381, 9923553
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2022

Keywords

Comments

Odd numbers k for which A351442(k) = A003958(k), or equally, for which k = A351444(k) = A322582(k) + A351442(k).
The 13th term, 2004345, is one of the rare abundant numbers (A005101, A005231) in this sequence.

Crossrefs

Odd terms in A351446.
These terms doubled form a subsequence of A351447.

Programs

A340083 a(n) = (n-1) / gcd(n-1, A003958(n)).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 7, 2, 9, 1, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 21, 1, 23, 3, 25, 13, 9, 1, 29, 1, 31, 8, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 11, 45, 1, 47, 4, 49, 25, 17, 1, 53, 27, 55, 14, 57, 1, 59, 1, 61, 31, 63, 4, 13, 1, 67, 17, 23, 1, 71, 1, 73, 37, 25, 19, 77, 1, 79, 5, 81, 1, 83, 21, 85, 43, 87, 1, 89, 5, 91, 23
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A003958(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1]--); factorback(f));
    A340083(n) = ((n-1)/gcd(n-1, A003958(n)));

Formula

a(n) = (n-1) / A340081(n) = (n-1) / gcd(n-1, A003958(n)).
Previous Showing 11-20 of 102 results. Next