cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A240554 Square array of the greatest prime factor of n^k + 1, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 2, 5, 2, 1, 5, 5, 3, 2, 1, 3, 17, 7, 17, 2, 1, 7, 13, 13, 41, 11, 2, 1, 2, 37, 7, 257, 61, 13, 2, 1, 3, 5, 31, 313, 41, 73, 43, 2, 1, 5, 13, 43, 1297, 521, 241, 547, 257, 2, 1, 11, 41, 19, 1201, 101, 601, 113, 193, 19, 2, 1, 3, 101, 73, 241
Offset: 1

Views

Author

T. D. Noe, Apr 07 2014

Keywords

Crossrefs

Cf. A003992 (n^k), A014442 (k=2), A081256 (k=3), A096172 (k=4).
Cf. A240548-A240553 (k=5 to 10).

Programs

  • Mathematica
    Table[FactorInteger[(n-k)^k + 1][[-1,1]], {n, 12}, {k, n}]

A305559 [0, -1, -1] together with A000290.

Original entry on oeis.org

0, -1, -1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500
Offset: 0

Views

Author

Paul Curtz, Jun 21 2018

Keywords

Comments

Squares leading to an autosequence of the first kind.
The third sequence of the array
A060576(n+1)= 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
A289207(n)= 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, ...
a(n)= 0, -1, -1, 0, 1, 4, 9, 16, 25, 36, ...
0, 10, 10, 5, 0, 1, 8, 27, 64, 125, ...
0, -113, -113, -68, -23, 0, 1, 16, 81, 256, ... .
The first full vertical is (-1)^n*A033312(n).
From 0, the first two nonzero antidiagonals are 0, -1, 10, -113, 1526, ... = (-1)^n* A176824(n+1).
See OEIS Wiki, Autosequence.
a(n) difference table:
0, -1, -1, 0, 1, 4, 9, 16, 25, ...
-1, 0, 1, 1, 3, 5, 7, 9, 11, ...
1, 1, 0, 2, 2, 2, 2, 2, 2, ...
0, -1, 2, 0, 0, 0, 0, 0, 0, ...

Crossrefs

Programs

  • Mathematica
    Join[{0,-1,-1},Range[0,100]^2] (* Paolo Xausa, Nov 13 2023 *)

Formula

From Stefano Spezia, May 28 2025: (Start)
G.f.: x*(1 - 2*x + x^3 - 2*x^4)/(1 - x)^3.
E.g.f.: 9 + 5*x + x^2 - exp(x)*(9 - 5*x + x^2). (End)

A329940 Square array read by antidiagonals upwards: T(n,k) is the number of right unique relations between set A with n elements and set B with k elements.

Original entry on oeis.org

1, 3, 2, 7, 8, 3, 15, 26, 15, 4, 31, 80, 63, 24, 5, 63, 242, 255, 124, 35, 6, 127, 728, 1023, 624, 215, 48, 7, 255, 2186, 4095, 3124, 1295, 342, 63, 8, 511, 6560, 16383, 15624, 7775, 2400, 511, 80, 9, 1023, 19682, 65535, 78124, 46655, 16806, 4095, 728, 99, 10
Offset: 1

Views

Author

Roy S. Freedman, Nov 24 2019

Keywords

Comments

A relation R between set A with n elements and set B with k elements is a subset of the Cartesian product A x B. A relation R is right unique if (a, b1) in R and (a,b2) in R implies b1=b2. T(n,k) is the number of right unique relations and T(k,n) is the number of left unique relations: relation R is left unique if (a1,b) in R and (a2,b) in R implies a1=a2.

Examples

			T(n,k) begins:
    1,    2,     3,      4,       5,       6,        7,        8, ...
    3,    8,    15,     24,      35,      48,       63,       80, ...
    7,   26,    63,    124,     215,     342,      511,      728, ...
   15,   80,   255,    624,    1295,    2400,     4095,     6560, ...
   31,  242,  1023,   3124,    7775,   16806,    32767,    59048, ...
   63,  728,  4095,  15624,   46655,  117648,   262143,   531440, ...
  127, 2186, 16383,  78124,  279935,  823542,  2097151,  4782968, ...
  255, 6560, 65535, 390624, 1679615, 5764800, 16777215, 43046720, ...
		

Crossrefs

Cf. A037205 (main diagonal).

Programs

  • Maple
    T:= (n, k)-> (k+1)^n-1:
    seq(seq(T(1+d-k, k), k=1..d), d=1..12);
  • Mathematica
    T[n_, k_] := (k + 1)^n - 1; Table[T[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 25 2019 *)
  • MuPAD
    T:=(n,k)->(k+1)^n-1:

Formula

T(n,k) = (k+1)^n - 1.
Previous Showing 21-23 of 23 results.