A240554
Square array of the greatest prime factor of n^k + 1, read by antidiagonals.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 2, 5, 2, 1, 5, 5, 3, 2, 1, 3, 17, 7, 17, 2, 1, 7, 13, 13, 41, 11, 2, 1, 2, 37, 7, 257, 61, 13, 2, 1, 3, 5, 31, 313, 41, 73, 43, 2, 1, 5, 13, 43, 1297, 521, 241, 547, 257, 2, 1, 11, 41, 19, 1201, 101, 601, 113, 193, 19, 2, 1, 3, 101, 73, 241
Offset: 1
-
Table[FactorInteger[(n-k)^k + 1][[-1,1]], {n, 12}, {k, n}]
Original entry on oeis.org
0, -1, -1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500
Offset: 0
-
Join[{0,-1,-1},Range[0,100]^2] (* Paolo Xausa, Nov 13 2023 *)
A329940
Square array read by antidiagonals upwards: T(n,k) is the number of right unique relations between set A with n elements and set B with k elements.
Original entry on oeis.org
1, 3, 2, 7, 8, 3, 15, 26, 15, 4, 31, 80, 63, 24, 5, 63, 242, 255, 124, 35, 6, 127, 728, 1023, 624, 215, 48, 7, 255, 2186, 4095, 3124, 1295, 342, 63, 8, 511, 6560, 16383, 15624, 7775, 2400, 511, 80, 9, 1023, 19682, 65535, 78124, 46655, 16806, 4095, 728, 99, 10
Offset: 1
T(n,k) begins:
1, 2, 3, 4, 5, 6, 7, 8, ...
3, 8, 15, 24, 35, 48, 63, 80, ...
7, 26, 63, 124, 215, 342, 511, 728, ...
15, 80, 255, 624, 1295, 2400, 4095, 6560, ...
31, 242, 1023, 3124, 7775, 16806, 32767, 59048, ...
63, 728, 4095, 15624, 46655, 117648, 262143, 531440, ...
127, 2186, 16383, 78124, 279935, 823542, 2097151, 4782968, ...
255, 6560, 65535, 390624, 1679615, 5764800, 16777215, 43046720, ...
-
T:= (n, k)-> (k+1)^n-1:
seq(seq(T(1+d-k, k), k=1..d), d=1..12);
-
T[n_, k_] := (k + 1)^n - 1; Table[T[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 25 2019 *)
-
T:=(n,k)->(k+1)^n-1:
Comments