cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 210 results. Next

A283469 a(n) = A004001(A004001(n-1)) OR A004001(n-A004001(n-1)), a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 2, 2, 3, 3, 7, 7, 4, 4, 4, 4, 5, 5, 7, 7, 7, 7, 14, 14, 15, 15, 15, 8, 8, 8, 8, 8, 9, 9, 11, 11, 13, 13, 14, 15, 14, 14, 15, 15, 15, 15, 15, 15, 15, 29, 29, 30, 30, 30, 31, 31, 31, 31, 16, 16, 16, 16, 16, 16, 17, 17, 19, 19, 21, 21, 21, 23, 22, 23, 26, 26, 27, 27, 27, 27, 30, 31, 31, 31, 31, 31, 31, 30, 31, 31, 31, 31, 31
Offset: 1

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Crossrefs

Cf. A003986, A283470, A283472, A283473 (positions where coincides with A004001).

Programs

Formula

a(1) = a(2) = 1; for n > 2, a(n) = A004001(A004001(n-1)) OR A004001(A080677(n-1)), where OR is bitwise-or (A003986)
Other identities. For all n >= 1:
a(n) = A283470(n) + A283472(n).
A004001(n) = a(n) + A283472(n).

A283471 Numbers n > 2 such that A004001(A004001(n-1)) = A004001(n-A004001(n-1)).

Original entry on oeis.org

3, 4, 6, 7, 8, 10, 13, 14, 15, 16, 18, 28, 29, 30, 31, 32, 34, 59, 60, 61, 62, 63, 64, 66, 122, 123, 124, 125, 126, 127, 128, 130, 249, 250, 251, 252, 253, 254, 255, 256, 258, 504, 505, 506, 507, 508, 509, 510, 511, 512, 514, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1026, 2038, 2039, 2040, 2041, 2042, 2043, 2044, 2045
Offset: 1

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Comments

Equally, numbers n > 2 for which A004001(A004001(n-1)) = A004001(A080677(n-1)).

Crossrefs

Positions of zeros in A283468 and A283470.
Subsequence of A283482.

Programs

  • Mathematica
    a[n_] := a[n] = If[n <= 2, 1, a[a[n - 1]] + a[n - a[n - 1]]]; Select[Range[3, 2^11], Function[n, a[#] == a[n - #] &@ a[n - 1]]] (* Michael De Vlieger, Mar 18 2017, after Robert G. Wilson v at A004001 *)

A283472 a(n) = A004001(A004001(n-1)) AND A004001(n-A004001(n-1)), a(1) = a(2) = 0.

Original entry on oeis.org

0, 0, 1, 1, 0, 2, 2, 2, 2, 3, 0, 0, 4, 4, 4, 4, 4, 5, 4, 5, 5, 6, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 9, 8, 9, 8, 8, 8, 8, 10, 10, 10, 11, 11, 12, 12, 12, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16, 17, 16, 17, 16, 17, 17, 16, 18, 18, 16, 16, 16, 17, 18, 18, 16, 16, 16, 17, 17, 17, 18, 20, 20, 20, 21, 22, 22, 24, 24, 24, 24
Offset: 1

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Crossrefs

Cf. A004001, A004198, A283469, A283470, A283473 (positions of zeros).

Programs

Formula

a(1) = a(2) = 0; for n > 2, a(n) = A004001(A004001(n-1)) AND A004001(A080677(n-1)), where AND is bitwise-and (A004198).
Other identities. For all n >= 1:
a(n) = A283469(n) - A283470(n).
A004001(n) = A283469(n) + a(n) = A283470(n) + 2*a(n).

A283473 Numbers n for which A004001(n) = A283470(n).

Original entry on oeis.org

1, 2, 5, 11, 12, 23, 24, 25, 26, 27, 50, 51, 52, 53, 54, 55, 56, 57, 58, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495
Offset: 1

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Comments

Equally, numbers n such that A004001(n) = A283469(n).

Crossrefs

Positions of zeros in A283472.

Programs

  • Mathematica
    a[n_] := a[n] = If[n <= 2, 1, a[a[n - 1]] + a[n - a[n - 1]]]; With[{nn = 500}, Function[s, Select[Range@ nn, a@ # == s[[#]] &]]@ Table[BitXor[a[#], a[n - #]] &@ a[n - 1] + Boole[n <= 2], {n, nn}]] (* Michael De Vlieger, Mar 18 2017, after Robert G. Wilson v at A004001 *)

A317754 Let b(1) = b(2) = 1; for n >= 3, b(n) = n - b(t(n)) - b(n-t(n)) where t = A004001. a(n) = 2*b(n) - n.

Original entry on oeis.org

1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, -1, 0, -1, -2, -3, -4, -3, -2, -1, 0, -1, -2, -3, -4, -5, -6, -5, -4, -3, -2, -1, 0, -1, -2, -3, -4, -3, -2, -1, 0, -1, 0, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
Offset: 1

Views

Author

Altug Alkan, Aug 06 2018

Keywords

Crossrefs

Programs

  • Maple
    t:= proc(n) option remember; `if`(n<3, 1,
          t(t(n-1)) +t(n-t(n-1)))
        end:
    b:= proc(n) option remember; `if`(n<3, 1,
          n -b(t(n)) -b(n-t(n)))
        end:
    seq(2*b(n)-n, n=1..100); # after Alois P. Heinz at A317686
  • Mathematica
    Block[{t = NestWhile[Function[{a, n}, Append[a, a[[a[[-1]] ]] + a[[-a[[-1]] ]] ] ] @@ {#, Length@ # + 1} &, {1, 1}, Last@ # < 60 &], b}, b = NestWhile[Function[{b, n}, Append[b, n - b[[t[[n]] ]] - b[[-t[[n]] ]] ] ] @@ {#, Length@ # + 1} &, {1, 1}, Length@ # < Length@ t &]; Array[2 b[[#]] - # &, Length@ b] ] (* Michael De Vlieger, Aug 07 2018 *)
  • PARI
    t=vector(99); t[1]=t[2]=1; for(n=3, #t, t[n] = t[n-t[n-1]]+t[t[n-1]]); b=vector(99); b[1]=b[2]=1; for(n=3, #b, b[n] = n-b[t[n]]-b[n-t[n]]); vector(99, k, 2*b[k]-k)

A249071 a(n) = A004001(2*n) - n, where A004001 is Hofstadter-Conway $10000 sequence.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 3, 3, 4, 4, 3, 4, 4, 3, 3, 2, 2, 1, 0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 5, 6, 6, 7, 7, 6, 7, 7, 6, 6, 5, 6, 6, 5, 5, 4, 4, 3, 3, 2, 1, 0, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 10, 11, 11, 12, 12, 11, 12, 12, 11, 11, 10, 11, 11, 12, 12, 11, 12, 12, 11, 11, 10, 11, 11, 10, 10, 9, 9, 8, 8, 8, 8, 8, 7, 7, 6, 5, 5, 4, 3, 3, 2, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 22 2014

Keywords

Comments

Hofstadter shows the plot of function A004001(n)-(n/2) at time 10:52 during the part two of DIMACS lecture. This sequence is obtained as the bisection of that function, thus containing only integers. Cf. also A004074.

Crossrefs

Cf. also A233270 (also has a similar Blancmange curve appearance).

Formula

a(n) = A004001(2*n) - n.
a(n) = A004074(2*n) / 2. [Also the even bisection of A004074 halved.]

A276343 Permutation of natural numbers: a(1) = 1, a(A087686(1+n)) = A005187(1+a(n)), a(A088359(n)) = A055938(a(n)), where A088359 & A087686 = numbers that occur only once & more than once in A004001.

Original entry on oeis.org

1, 3, 2, 7, 6, 5, 4, 15, 14, 13, 12, 11, 9, 10, 8, 31, 30, 29, 28, 27, 26, 24, 20, 25, 21, 23, 22, 17, 18, 19, 16, 63, 62, 61, 60, 59, 58, 57, 55, 51, 43, 56, 52, 44, 54, 48, 53, 50, 45, 36, 47, 37, 39, 49, 40, 41, 46, 42, 33, 34, 35, 38, 32, 127, 126, 125, 124, 123, 122, 121, 120, 118, 114, 106, 90, 119, 115, 107, 91, 117, 111, 99
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2016

Keywords

Crossrefs

Inverse: A276344.
Similar or related permutations: A233276, A233278, A267111, A276345, A276441.
Compare also to the scatter-plots of A276443 and A276445.

Programs

Formula

a(1) = 1; for n > 1, if A093879(n-1) = 0 [when n is in A087686], a(n) = A005187(1+a(A080677(n)-1)), otherwise [when n is in A088359], a(n) = A055938(a(A004001(n)-1)).
As a composition of other permutations:
a(n) = A233276(A267111(n)).
a(n) = A233278(A276441(n)).

A276344 Permutation of natural numbers: a(1) = 1; a(A005187(1+n)) = A087686(1+a(n)), a(A055938(n)) = A088359(a(n)), where A088359 & A087686 = numbers that occur only once & more than once in A004001.

Original entry on oeis.org

1, 3, 2, 7, 6, 5, 4, 15, 13, 14, 12, 11, 10, 9, 8, 31, 28, 29, 30, 23, 25, 27, 26, 22, 24, 21, 20, 19, 18, 17, 16, 63, 59, 60, 61, 50, 52, 62, 53, 55, 56, 58, 41, 44, 49, 57, 51, 46, 54, 48, 40, 43, 47, 45, 39, 42, 38, 37, 36, 35, 34, 33, 32, 127, 122, 123, 124, 108, 110, 125, 111, 113, 114, 126, 89, 92, 117, 115, 118, 94, 119, 121
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2016

Keywords

Crossrefs

Inverse: A276343.
Similar or related permutations: A233275, A233277, A267112, A276346, A276442.

Programs

Formula

a(1)=1; for n > 1, if A079559(n)=1 [when n is in A005187], a(n) = A087686(1+a(A213714(n)-1)), otherwise a(n) = A088359(a(A234017(n))).
As a composition of other permutations:
a(n) = A267112(A233275(n)).
a(n) = A276442(A233277(n)).

A276345 Permutation of natural numbers: a(1) = 1, a(A087686(1+n)) = A055938(a(n)), a(A088359(n)) = A005187(1+a(n)), where A088359 & A087686 = numbers that occur only once & more than once in A004001.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 6, 12, 10, 8, 15, 9, 11, 14, 13, 27, 23, 19, 16, 31, 21, 18, 22, 17, 26, 30, 20, 25, 24, 29, 28, 58, 53, 46, 38, 32, 63, 48, 41, 35, 42, 40, 34, 50, 33, 57, 62, 44, 39, 49, 37, 47, 45, 36, 56, 55, 61, 43, 54, 52, 51, 60, 59, 121, 113, 104, 89, 74, 64, 127, 108, 95, 81, 70, 82, 93, 79, 67, 98, 77, 66, 112, 65, 120
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2016

Keywords

Crossrefs

Inverse: A276346.
Similar or related permutations: A233276, A233278, A267111, A276343, A276441.

Programs

Formula

a(1) = 1; for n > 1, if A093879(n-1) = 0 [when n is in A087686], a(n) = A055938(a(A080677(n)-1)), otherwise [when n is in A088359], a(n) = A005187(1+a(A004001(n)-1)).
As a composition of other permutations:
a(n) = A233276(A276441(n)).
a(n) = A233278(A267111(n)).

A276346 Permutation of natural numbers: a(1) = 1; a(A005187(1+n)) = A088359(a(n)), a(A055938(n)) = A087686(1+a(n)), where A088359 & A087686 = numbers that occur only once & more than once in A004001.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 6, 10, 12, 9, 13, 8, 15, 14, 11, 19, 24, 22, 18, 27, 21, 23, 17, 29, 28, 25, 16, 31, 30, 26, 20, 36, 45, 43, 40, 54, 51, 35, 49, 42, 39, 41, 58, 48, 53, 34, 52, 38, 50, 44, 61, 60, 33, 59, 56, 55, 46, 32, 63, 62, 57, 47, 37, 69, 83, 81, 78, 102, 99, 74, 97, 93, 91, 68, 116, 112, 80, 88, 77, 109, 73, 75, 96, 90
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2016

Keywords

Crossrefs

Inverse: A276345.
Similar or related permutations: A233275, A233277, A267112, A276344, A276442.

Programs

Formula

a(1)=1; for n > 1, if A079559(n)=1 [when n is in A005187], a(n) = A088359(a(A213714(n)-1)), otherwise a(n) = A087686(1+a(A234017(n))).
As a composition of other permutations:
a(n) = A276442(A233275(n)).
a(n) = A267112(A233277(n)).
Previous Showing 21-30 of 210 results. Next