cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 190 results. Next

A162984 Number of Dyck paths with no UUU's and no DDD's of semilength n and having k UUDUDD's (0<=k<=floor(n/3); U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 1, 2, 3, 1, 6, 2, 12, 5, 25, 11, 1, 53, 26, 3, 114, 62, 9, 249, 148, 25, 1, 550, 355, 69, 4, 1227, 853, 189, 14, 2760, 2057, 509, 46, 1, 6253, 4973, 1359, 145, 5, 14256, 12050, 3600, 446, 20, 32682, 29256, 9484, 1334, 75, 1, 75293, 71154, 24870, 3914, 265, 6
Offset: 0

Views

Author

Emeric Deutsch, Oct 11 2009

Keywords

Comments

T(n,k) is the number of weighted lattice paths in B(n) having k peaks. The members of B(n) are paths of weight n that start at (0,0), end on but never go below the horizontal axis, and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps. A peak is a (1,1)-step followed by a (1,-1)-step. Example: T(7,2)=3. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and U=(1,1), D=(1,-1), we have hUDUD, UDhUD, and UDUDh.
Number of entries in row n is 1+floor(n/3).

Examples

			T(4,1) = 2 because we have UDUUDUDD and UUDUDDUD.
Triangle starts:
1;
1;
2;
3,   1;
6,   2;
12,  5;
25, 11, 1;
53, 26, 3;
		

Crossrefs

Programs

  • Maple
    G := ((1-z-z^2+z^3-t*z^3-sqrt(1-2*z-z^2-2*t*z^3-z^4-2*z^5+z^6+2*t*z^4+2*t*z^5-2*t*z^6+t^2*z^6))*1/2)/z^3: Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, j), j = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x or t=9, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 3, 9, 5, 3, 2, 2, 2][t])+
         `if`(t=6, z, 1) *b(x-1, y-1, [8, 8, 4, 7, 6, 7, 9, 7][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x || t == 9, 0, If[x == 0, 1, Expand[b[x-1, y+1, {2, 3, 9, 5, 3, 2, 2, 2}[[t]] ] + If[t == 6, z, 1]*b[x-1, y-1, {8, 8, 4, 7, 6, 7, 9, 7}[[t]] ]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)

Formula

G.f.: G=G(t,z) satisfies G = 1 + zG + z^2*G + z^3*(G-1+t)G.
Sum of entries in row n = A004148(n+1).
T(n,0) = A162985(n).
Sum(k*T(n,k), k=0..floor(n/3)) = A110320(n-2).

A166291 Triangle read by rows: T(n,k) is the number of Dyck paths with no UUU's and no DDD's, of semilength n and having k peaks at odd level (0<=k<=n; U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 2, 2, 3, 0, 1, 3, 6, 3, 4, 0, 1, 5, 10, 12, 4, 5, 0, 1, 8, 20, 22, 20, 5, 6, 0, 1, 13, 36, 52, 40, 30, 6, 7, 0, 1, 21, 66, 104, 109, 65, 42, 7, 8, 0, 1, 34, 118, 214, 240, 200, 98, 56, 8, 9, 0, 1, 55, 210, 421, 549, 481, 335, 140, 72, 9, 10, 0, 1, 89, 370
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2009

Keywords

Comments

Sum of entries in row n = A004148(n+1) (the secondary structure numbers).
T(n,0)=A000045(n-1) (the Fibonacci numbers).
Sum(k*T(n,k), k=0..n)=A166292(n).

Examples

			T(4,2)=3 because we have (UD)(UD)UUDD, (UD)UUDD(UD), and UUDD(UD)(UD) (the odd level peaks are shown between parentheses).
Triangle starts:
1;
0,1;
1,0,1;
1,2,0,1;
2,2,3,0,1;
3,6,3,4,0,1.
		

Crossrefs

Programs

  • Maple
    p1 := -G+1+t*z*G+s*z^2*G+s^2*z^3*H*G: p2 := subs({t = s, s = t, G = H, H = G}, p1): r := resultant(p1, p2, H): G := RootOf(subs(s = 1, r), G): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, j), j = 0 .. n) end do; yields sequence in triangular form

Formula

The trivariate g.f. G=G(t,s,z), where z marks semilength, t marks odd-level peaks and s marks even-level peaks, satisfies G = 1 + tzG + sz^2*G + s^2*z^3*HG, where H=G(s,t,z) (interchanging t and s and eliminating H, one obtains G(t,s,z); see the Maple program).

A166293 Triangle read by rows: T(n,k) is the number of Dyck paths with no UUU's and no DDD's, of semilength n and having k peaks at even level (0<=k<=n-1; U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 12, 5, 1, 1, 6, 22, 28, 18, 6, 1, 1, 7, 35, 59, 50, 25, 7, 1, 1, 8, 54, 114, 124, 80, 33, 8, 1, 1, 9, 82, 210, 279, 226, 119, 42, 9, 1, 1, 10, 124, 374, 592, 576, 375, 168, 52, 10, 1, 1, 11, 188, 653, 1199, 1374, 1062, 582, 228, 63
Offset: 1

Views

Author

Emeric Deutsch, Oct 12 2009

Keywords

Comments

Sum of entries in row n = A004148(n+1) (the secondary structure numbers).
T(n,0)=1.
Sum(k*T(n,k), k=0..n-1)=A166294(n).

Examples

			T(4,2)=3 because we have UDU(UD)(UD)D, U(UD)(UD)DUD, and U(UD)DU(UD)D (the even-level peaks are shown between parentheses).
Triangle starts:
1;
1,1;
1,2,1;
1,3,3,1;
1,4,7,4,1;
1,5,13,12,5,1.
		

Crossrefs

Programs

  • Maple
    p1 := -G+1+t*z*G+s*z^2*G+s^2*z^3*H*G: p2 := subs({t = s, s = t, G = H, H = G}, p1): r := resultant(p1, p2, H): G := RootOf(subs(t = 1, r), G): Gser := simplify(series(G, z = 0, 15)): for n to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n to 12 do seq(coeff(P[n], s, j), j = 0 .. n-1) end do; # yields sequence in triangular form

Formula

The trivariate g.f. G=G(t,s,z), where z marks semilength, t marks odd-level peaks and s marks even-level peaks, satisfies G = 1 + tzG + sz^2*G + s^2*z^3*HG, where H=G(s,t,z) (interchanging t and s and eliminating H, one obtains G(t,s,z); see the Maple program).

A166297 Number of UUDUDD's starting at level 0 in all Dyck paths of semilength n with no UUU's and no DDD's (U=(1,1), D=(1,-1)).

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 12, 28, 66, 156, 370, 882, 2112, 5079, 12264, 29725, 72298, 176414, 431754, 1059595, 2607090, 6429913, 15893330, 39365876, 97692372, 242875105, 604836072, 1508619585, 3768496102, 9426815859, 23612178180, 59217406914
Offset: 0

Views

Author

Emeric Deutsch, Oct 29 2009

Keywords

Comments

a(n) = Sum_{k=0..floor(n/3)} k*A166295(n,k).

Examples

			a(3)=1 because in UDUDUD, UDUUDD, UUDDUD, and UUDUDD we have 0+0+0+1=1 UUDUDD's starting at level 0.
		

Crossrefs

Cf. A166295.
Cf. A004148. - Emeric Deutsch, Nov 10 2009

Programs

  • Maple
    G := 4*z^3/(1-z-z^2+sqrt(1-2*z-z^2-2*z^3+z^4))^2: Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 32);
  • Mathematica
    CoefficientList[Series[4*x^3/(1-x-x^2+Sqrt[1-2*x-x^2-2*x^3+x^4])^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • Maxima
    a(n):=2*sum((binomial(n-1-k,k)*binomial(n-1-k,k+2))/(n-1-k),k,0,(n-2)/2); /* Vladimir Kruchinin, Oct 13 2020 */

Formula

G.f.: G(z) = 4*z^3/(1-z-z^2+sqrt(1-2*z-z^2-2*z^3+z^4))^2.
a(n) = A004148(n+1) - A004148(n) - A004148(n-1) for n>=3. - Emeric Deutsch, Nov 10 2009
a(n) ~ sqrt(5 + 3*sqrt(5)) * ((3+sqrt(5))/2)^n / (sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
a(n) = 2*Sum_{k=0..(n-2)/2} C(n-k-1,k)*C(n-k-1,k+2)/(n-k-1). - Vladimir Kruchinin, Oct 13 2020
D-finite with recurrence +(n+3)*a(n) +(-3*n-4)*a(n-1) +(n-4)*a(n-3) +2*(2*n-7)*a(n-4) +(n-6)*a(n-5) +(-n+7)*a(n-6)=0. - R. J. Mathar, Jul 24 2022

A167634 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having k peaks at odd level.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 3, 1, 5, 2, 1, 1, 10, 5, 1, 14, 12, 9, 2, 7, 38, 27, 9, 1, 43, 60, 57, 22, 3, 36, 156, 146, 69, 15, 1, 143, 284, 326, 176, 45, 4, 166, 672, 784, 482, 155, 23, 1, 509, 1320, 1780, 1224, 453, 82, 5, 731, 2981, 4162, 3160, 1354, 313, 33, 1, 1915, 6104
Offset: 0

Views

Author

Emeric Deutsch, Nov 08 2009

Keywords

Comments

Sum of entries in row n is the secondary structure number A004148(n-1) (n >= 2).
Row n contains ceiling(n/2) entries (n >= 1).
T(n,0) = A167635(n).
Sum_{k>=0} k*T(n,k) = A167636(n).

Examples

			T(5,1)=3 because we have UUDDUU(UD)DD, UU(UD)DDUUDD, and UUUU(UD)DDDD (the odd-level peaks are shown between parentheses).
Triangle starts:
   1;
   0;
   1;
   0,  1;
   2,  0;
   0,  3,  1;
   5,  2,  1;
   1, 10,  5,  1;
  14, 12,  9,  2;
		

Crossrefs

Programs

  • Maple
    eq := z*(1+z-z^2)*G^2-(1+z-z^2)*(1+z-t*z^2)*G+1+z-t*z^2 = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(expand(coeff(Gser, z, n))) end do: 1; for n to 16 do seq(coeff(P[n], t, j), j = 0 .. ceil((1/2)*n)-1) end do; # yields sequence in triangular form

Formula

G.f.: G=G(t,z) satisfies z(1+z-z^2)G^2-(1+z-z^2)(1+z-tz^2)G + 1+z-tz^2=0.
The trivariate g.f. G=G(t,s,z), where t marks odd-level peaks, s marks even-level peaks, and z marks semilength, satisfies aG^2 - bG + c = 0, where a = z(1+z-sz^2), b=(1+z-tz^2)(1+z-sz^2), c=1+z-tz^2.

A167637 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having k peaks at even level.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 0, 1, 3, 3, 1, 5, 8, 4, 0, 5, 13, 12, 6, 1, 15, 32, 27, 8, 0, 21, 59, 61, 33, 10, 1, 51, 134, 147, 76, 15, 0, 85, 267, 327, 208, 75, 15, 1, 188, 584, 771, 528, 186, 26, 0, 344, 1209, 1734, 1329, 585, 150, 21, 1, 730, 2608, 4008, 3344, 1595, 408, 42, 0
Offset: 0

Views

Author

Emeric Deutsch, Nov 08 2009

Keywords

Comments

Sum of entries in row n is the secondary structure number A004148(n-1) (n>=2).
Row n contains 1 + floor(n/2) entries.
T(n,0) = A167638(n).
Sum_{k>=0} k*T(n,k) = A167639(n).

Examples

			T(6,2)=3 because we have U(UD)DUUU(UD)DDD, UUU(UD)DDDU(UD)D, and UUU(UD)DU(UD)DDD (the even-level peaks are shown between parentheses).
Triangle starts:
  1;
  0;
  0,  1;
  1,  0;
  0,  1,  1;
  2,  2,  0;
  1,  3,  3,  1;
  5,  8,  4,  0;
  5, 13, 12,  6,  1;
  ...
		

Crossrefs

Programs

  • Maple
    eq := z*(1+z-t*z^2)*G^2-(1+z-z^2)*(1+z-t*z^2)*G+1+z-z^2 = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(expand(coeff(Gser, z, n))) end do: for n from 0 to 16 do seq(coeff(P[n], t, j), j = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f.: G=G(t,z) satisfies z(1+z-tz^2)G^2-(1+z-z^2)(1+z-tz^2)G + 1+z-z^2=0.
The trivariate g.f. G=G(t,s,z), where t marks odd-level peaks, s marks even-level peaks, and z marks semilength, satisfies aG^2 - bG + c = 0, where a = z(1+z-sz^2), b=(1+z-tz^2)(1+z-sz^2), c=1+z-tz^2.

A182896 Triangle read by rows: T(n,k) is the number of weighted lattice paths in L_n having k (1,-1)-returns to the horizontal axis. The members of L_n are paths of weight n that start at (0,0), end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.

Original entry on oeis.org

1, 1, 2, 4, 1, 8, 3, 17, 9, 37, 25, 1, 82, 66, 5, 185, 171, 20, 423, 437, 70, 1, 978, 1107, 225, 7, 2283, 2790, 686, 35, 5373, 7009, 2015, 147, 1, 12735, 17574, 5760, 553, 9, 30372, 44019, 16135, 1932, 54, 72832, 110210, 44500, 6398, 264, 1, 175502, 275925, 121247, 20350, 1134, 11
Offset: 0

Views

Author

Emeric Deutsch, Dec 12 2010

Keywords

Examples

			T(3,1)=1. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; exactly one of them, namely ud, has one (1,-1)-return to the horizontal axis.
Triangle starts:
   1;
   1;
   2;
   4,  1;
   8,  3;
  17,  9;
  37, 25, 1;
  82, 66, 5;
  ...
		

Crossrefs

Programs

  • Maple
    eq := c = 1+z*c+z^2*c+z^3*c^2: c := RootOf(eq, c): G := 1/(1-z-z^2-t*z^3*c-z^3*c): Gser := simplify(series(G, z = 0, 19)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do; for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/3)*n)) end do: #yields sequence in triangular form
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(1/(1-x-x^2 - (1+y)*(1-x-x^2 - sqrt(1+x^4-2*x^3-x^2-2*x+O(x*x^n)))/2))]}
    { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Nov 05 2019

Formula

G.f.: G(t,z) = 1/(1-z-z^2-(1+t)z^3*c), where c satisfies c = 1 + zc + z^2*c + z^3*c^2.
Sum of entries in row n is A051286(n).
T(n,0) = A004148(n+1) (the secondary structure numbers).
Sum_{k=0..n} k*T(n,k) = A182897(n).

Extensions

Data corrected by Andrew Howroyd, Nov 05 2019

A182900 Triangle read by rows: T(n,k) is the number of weighted lattice paths in B(n) having k valleys. The members of B(n) are paths of weight n that start at (0,0), end on but never go below the horizontal axis, and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps. A valley is a (1,-1)-step followed by a (1,1)-step.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 36, 1, 78, 4, 171, 14, 379, 43, 1, 848, 125, 5, 1912, 351, 20, 4341, 960, 71, 1, 9915, 2579, 235, 6, 22767, 6833, 745, 27, 52526, 17916, 2281, 108, 1, 121698, 46593, 6805, 399, 7, 283043, 120385, 19885, 1400, 35, 660579, 309416, 57141, 4712, 155, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 15 2010

Keywords

Comments

Sum of entries in row n is A004148(n+1) (the 2ndary structure numbers).
T(n,0)=A182901(n).
Sum(k*T(n,k), k>=0) = A182902(n).
For the distribution of the statistic "number of peaks" see A162984. A peak is a (1,1)-step followed by a (1,-1)-step.

Examples

			T(7,1)=4. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and U=(1,1), D=(1,-1), we have hUDUD, UDUDh, UDUhD, and UhDUD.
Triangle starts:
1;
1;
2;
4;
8;
17;
36,1;
78,4;
171,14;
		

References

  • M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.

Crossrefs

Programs

  • Maple
    eq := z^3*(z+z^2+v-v*z-v*z^2)*F^2-(1-z-z^2-z^3+v*z^3)*F+1 = 0: F := RootOf(eq, F): Fser := simplify(series(F, z = 0, 20)): for n from 0 to 18 do P[n] := sort(coeff(Fser, z, n)) end do: 1; 1; 2; for n from 0 to 18 do seq(coeff(P[n], v, k), k = 0 .. floor((1/3)*n)-1) end do; # yields sequence in triangular form

Formula

G. f.: F=F(v,z) satisfies z^3*(z+z^2+v-vz-vz^2)F^2 - (1-z-z^2-z^3+vz^3)F+1=0 (z marks weight, v marks number of valleys).
The trivariate g.f. H(u,v,z), where u (v) marks peaks (valleys) and z marks weight is given by H=1+zH+z^2*H+z^3*(u-1+H)[v(H-1-zH-z^2*H)+1+zH+z^2*H].

A187256 Number of peakless Motzkin paths of length n, assuming that the (1,0)-steps come in 2 colors.

Original entry on oeis.org

1, 2, 4, 10, 28, 82, 248, 770, 2440, 7858, 25644, 84618, 281844, 946338, 3199728, 10885122, 37230352, 127951714, 441633812, 1530242954, 5320853260, 18560408050, 64932101224, 227767796482, 800928670232, 2822814469394, 9969770245948, 35280714655498
Offset: 0

Views

Author

Emeric Deutsch, May 03 2011

Keywords

Comments

Ordinary peakless Motzkin paths are counted by A004148.
Also the number of Catalan words of length n avoiding the consecutive pattern 010. - Sela Fried, May 21 2025

Examples

			a(4)=28 because, denoting U=(1,1), D=(1,-1), and H=(1,0), we have 2^4=16 paths of shape HHHH, 2^2=4 paths of shape HUHD, 2^2 = 4 paths of shape UHDH, and 4 paths of shape UHHD.
		

Crossrefs

Column k=0 of A114848 (shifted). - Alois P. Heinz, Mar 31 2016

Programs

  • Maple
    eq := G = 1+2*z*G+z^2*G*(G-1): G := RootOf(eq, G): Gser := series(G, z = 0, 30): seq(coeff(Gser, z, n), n = 0 .. 27);
  • Mathematica
    CoefficientList[Series[(1 + (x-2)*x - Sqrt[(1 + (x-4)*x)*(1+x^2)])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 02 2014 *)
    a[n_] := 2^n HypergeometricPFQ[{-n/2, (1 - n)/2, (1 - n)/2, 1 - n/2}, {2, -n, -n + 1}, 4]; Array[a, 28, 0] (* Peter Luschny, Jan 25 2020 *)
  • Maxima
    a(n):=sum(((-1)^i*binomial(n-i,i)*binomial(2*n-4*i+2,n-2*i))/(n-2*i+1),i,0,(n)/2); /* Vladimir Kruchinin, Jun 01 2014 */
    
  • PARI
    my(x='x+O('x^50)); Vec((1 + (x-2)*x - sqrt((1 + (x-4)*x)*(1+x^2))) /( 2*x^2)) \\ G. C. Greubel, Feb 12 2017

Formula

G.f.: G(z) satisfies the equation G = 1 + 2*z*G + z^2*G*(G-1).
Conjecture: (n+2)*a(n) -2*(2*n+1)*a(n-1) +2*(n-1)*a(n-2) +2*(5-2*n)*a(n-3) +(n-4)*a(n-4) = 0. - R. J. Mathar, Nov 16 2011
a(n) = Sum_{i=0..n/2} (-1)^i*binomial(n-i,i)*binomial(2*n-4*i+2,n-2*i)/(n-2*i+1). - Vladimir Kruchinin, Jun 01 2014
a(n) ~ sqrt(24+14*sqrt(3)) * (2+sqrt(3))^n / (2*sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 02 2014
a(n) = 2^n*hypergeom([-n/2, (1 - n)/2, (1 - n)/2, 1 - n/2], [2, -n, -n + 1], 4). - Peter Luschny, Jan 25 2020

A190164 Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n having a total of k (1,0)-steps at levels 0,2,4,... .

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 3, 3, 0, 0, 1, 2, 4, 6, 4, 0, 0, 1, 4, 8, 9, 10, 5, 0, 0, 1, 7, 18, 19, 16, 15, 6, 0, 0, 1, 12, 35, 48, 36, 25, 21, 7, 0, 0, 1, 22, 66, 102, 100, 60, 36, 28, 8, 0, 0, 1, 41, 132, 209, 229, 180, 92, 49, 36, 9, 0, 0, 1, 76, 266, 450, 504, 440, 294, 133, 64, 45, 10, 0, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, May 06 2011

Keywords

Comments

Sum of entries in row n is A004148(n) (the RNA secondary structure numbers).
T(n,0)=A190165(n).
Sum_{k>=0} k*T(n,k) = A190166(n).
The trivariate g.f. H(t,s,z), where t (s) marks (1,0)-steps at even (odd) levels and z marks length, satisfies the equation
z^2*(1-tz+z^2)*H^2 - (1-tz+z^2)*(1-sz+z^2)*H + 1-sz+z^2 = 0.

Examples

			T(5,2)=3 because we have h'h'uhd, h'uhdh', and uhdh'h', where u=(1,1), h=(1,0), d=(1,-1) (the even-level h-steps are marked).
Triangle starts:
  1;
  0, 1;
  0, 0, 1;
  1, 0, 0, 1;
  1, 2, 0, 0, 1;
  1, 3, 3, 0, 0, 1;
		

Crossrefs

Programs

  • Maple
    eq := z^2*(1-t*z+z^2)*G^2-(1-z+z^2)*(1-t*z+z^2)*G+1-z+z^2 = 0: g := RootOf(eq, G): Gser := simplify(series(g, z = 0, 15)): for n from 0 to 13 do P[n] := sort(expand(coeff(Gser, z, n))) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
  • Mathematica
    m = 13; G[_] = 0;
    Do[G[z_] = -((z^2 G[z]^2 (-t z + z^2 + 1) + z^2 - z + 1)/((z^2 - z + 1)(t z - z^2 - 1))) + O[z]^m, {m}];
    CoefficientList[#, t]& /@ CoefficientList[G[z], z] // Flatten (* Jean-François Alcover, Nov 15 2019 *)

Formula

G.f.: G = G(t,z) satisfies the equation z^2*(1-tz+z^2)*G^2 - (1-z+z^2)*(1-tz+z^2)*G + 1 - z + z^2 = 0.
Previous Showing 61-70 of 190 results. Next