cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A190172 Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n having k UHD's; here U=(1,1), H=(1,0), and D=(1,-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 4, 4, 8, 8, 1, 16, 18, 3, 33, 40, 9, 69, 90, 25, 1, 146, 204, 69, 4, 312, 467, 183, 16, 673, 1074, 479, 56, 1, 1463, 2481, 1239, 185, 5, 3202, 5752, 3180, 576, 25, 7050, 13378, 8104, 1734, 105, 1, 15605, 31196, 20544, 5076, 405, 6, 34705, 72912, 51852, 14546, 1451, 36
Offset: 0

Views

Author

Emeric Deutsch, May 06 2011

Keywords

Comments

Number of entries in row n is 1+floor(n/3).
Sum of entries in row n = A004148 (the RNA secondary structure numbers).
T(n,0)=A004149(n).
Sum(k*T(n,k),k>=0)=A110236(n-2) (n>=3).

Examples

			T(5,1)=4 because we have HHUHD, HUHDH, UHDH, and UUHDD.
Triangle starts:
1;
1;
1;
1,1;
2,2;
4,4;
8,8,1;
16,18,3;
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*G*(G-1-z+t*z): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 25)): for n from 0 to 17 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 17 do seq(coeff(P[n], t, k), k = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form

Formula

G.f. G=G(t,z) satisfies the equation G = 1 + zG + z^2*G(G-1-z+tz).

A136018 Triangle read by rows: r(n,k) = g(n,n-k), where g(n,k) is the number of ideals of size k in a garland (or double fence) of order n (see A137278).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 3, 3, 1, 7, 6, 6, 4, 1, 15, 14, 12, 10, 5, 1, 33, 32, 27, 22, 15, 6, 1, 75, 72, 63, 50, 37, 21, 7, 1, 171, 164, 146, 118, 88, 58, 28, 8, 1, 391, 377, 338, 280, 212, 147, 86, 36, 9, 1, 899, 870, 786, 662, 514, 366, 234, 122, 45, 10, 1, 2077, 2014, 1834, 1564
Offset: 0

Views

Author

Emanuele Munarini, Mar 21 2008

Keywords

Comments

Row n has n+1 terms.

References

  • T. S. Blyth, J. C. Varlet, Ockham algebras, Oxford Science Pub. 1994.
  • E. Munarini, Enumeration of order ideals of a garland, Ars Combin. 76 (2005), 185--192.

Formula

Recurrence: r(n+3,k+1) = r(n+2,k) + r(n+2,k+1) + r(n+2,k+2) - r(n+1,k+1) - r(n,k+1).
Riordan matrix: R = ( g(x), f(x) ), where g(x) = ( 1 - x^2 )/sqrt( 1 - 2 x - x^2 - x^4 + 2 x^5 + x^6 ) f(x) = ( 1 - x + x^2 + x^3 - sqrt( 1 - 2 x - x^2 - 3 x^4 + 2 x^5 + x^6 ) )/(2x) g(x) is the generating series for the central ideals c(n) = g(2n,n). f(x)/x is the generating series for sequence A004149.

A258709 Triangle of generalized Catalan numbers read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 9, 4, 2, 1, 1, 21, 8, 4, 2, 1, 1, 51, 17, 8, 4, 2, 1, 1, 127, 37, 16, 8, 4, 2, 1, 1, 323, 82, 33, 16, 8, 4, 2, 1, 1, 835, 185, 69, 32, 16, 8, 4, 2, 1, 1, 2188, 423, 146, 65, 32, 16, 8, 4, 2, 1, 1, 5798, 978, 312, 133, 64, 32, 16, 8, 4, 2, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2015

Keywords

Examples

			Triangle begins
1,
1,1,
2,1,1,
4,2,1,1,
9,4,2,1,1,
21,8,4,2,1,1,
51,17,8,4,2,11,
127,37,16,8,4,2,1,1,
323,82,33,16,8,4,2,1,1,
835,185,69,32,16,8,4,2,1,1,
...
		

Crossrefs

Cf. A064645.
First 3 columns are A001006, A004148, A004149.

Extensions

Corrected and extended by Manfred Scheucher, Jul 25 2015

A329664 Number of excursions of length n with Motzkin-steps avoiding the consecutive steps UD, HH and DU.

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 4, 8, 12, 21, 40, 69, 122, 227, 412, 747, 1386, 2567, 4744, 8851, 16566, 31004, 58268, 109858, 207368, 392331, 744072, 1413291, 2688822, 5124738, 9781492, 18694896, 35780444, 68566567, 131546440, 252661515, 485806614, 935017790, 1801327884, 3473467328, 6703610548
Offset: 0

Views

Author

Valerie Roitner, Nov 19 2019

Keywords

Comments

The Motzkin step set is U=(1,1), H=(1,0) and D=(1,-1). An excursion is a path starting at (0,0), ending on the x-axis and never crossing the x-axis, i.e., staying at nonnegative altitude.

Examples

			a(4)=2 as one has 2 excursions of length 4, namely: HUHD and UHDH.
		

Crossrefs

Cf. A004149 (avoiding UD and DU).

Formula

G.f.: (t+1)*(1 - t - sqrt(4*t^4 - 4*t^3 + t^2 - 2*t + 1))/(2*t^3).

A387224 Number of dissections of a convex n-gon by strictly disjoint diagonals so as to create no triangles.

Original entry on oeis.org

0, 1, 1, 4, 8, 17, 37, 81, 177, 389, 859, 1905, 4241, 9477, 21251, 47806, 107864, 244045, 553575, 1258687, 2868285, 6549757, 14985361, 34347444, 78860152, 181347591, 417653187, 963234195, 2224464087, 5143567237, 11907471643, 27597112946, 64028244032, 148703128913, 345690623119
Offset: 3

Views

Author

Muhammed Sefa Saydam, Aug 22 2025

Keywords

Comments

Strictly disjoint diagonals means that the diagonals are non-crossing and may not share endpoints.

Examples

			         n=4                         n=5                            n=6
    (1)       (2)                    (1)              (1) (2)     (1) (2)     (1) (2)
                                  (5)   (2)         (6)  \  (3) (6)-----(3) (6)  /  (3)
    (4)       (3)                  (4) (3)            (5) (4)     (5) (4)     (5) (4)
 Diagonal cannot be drawn   Diagonal cannot be drawn
    Number of cases = 1       Number of cases = 1         Number of cases = 3
		

Crossrefs

Programs

  • PARI
    seq(n) = my(g=2/(1 - x + x^2 + x^3 + sqrt((1-x^4)*(1-2*x-x^2) + O(x*x^n)))); Vec((1 - x^2 - 2*x^3)*g - 1 - x + 2*x^3 + 2*x^4, -n+2) \\ Andrew Howroyd, Aug 28 2025

Formula

a(n) = A004149(n) - A004149(n-2) - 2*A004149(n-3) for n >= 5.
G.f.: (1 - x^2 - 2*x^3)*B(x) - 1 - x + 2*x^3 + 2*x^4, where B(x) is the g.f. of A004149. - Andrew Howroyd, Aug 28 2025
Previous Showing 11-15 of 15 results.