cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-42 of 42 results.

A083367 Numbers k that are equal to the sum of its divisors after the digits of each divisor have been sorted in ascending order.

Original entry on oeis.org

1, 60, 1959, 149587, 277947, 1449933, 2222863, 2396214, 24918486, 25354845, 48878262, 1673533845, 24753647943
Offset: 1

Views

Author

Jason Earls, Jun 11 2003

Keywords

Comments

No more terms through 10^8. - Ryan Propper, Sep 09 2005
a(13) > 10^10. - Donovan Johnson, Aug 28 2013
a(14) > 10^11. - Giovanni Resta, Aug 30 2013

Examples

			a(3) = 1959 because the divisors of 1959 are [1, 3, 653, 1959] and 1+3+356+1599 = 1959.
		

Crossrefs

Cf. A004185.

Programs

  • Mathematica
    Do[l = IntegerDigits /@ Divisors[n]; l = Map[Sort[ # ]&, l]; k = Plus @@ Map[FromDigits[ # ]&, l]; If[k == n, Print[n]], {n, 1, 10^8}] (* Ryan Propper, Sep 09 2005 *)
    Select[Range[24*10^5],Total[FromDigits[Sort[IntegerDigits[#]]]&/@Divisors[#]] == #&] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Dec 28 2022 *)
  • PARI
    is(n) = sumdiv(n,d,fromdigits(vecsort(digits(d))))==n \\ David A. Corneth, Dec 28 2022
    
  • Python
    from sympy import divisors
    def sa(n): return int("".join(sorted(str(n))))
    def ok(n): return n == sum(sa(d) for d in divisors(n, generator=True))
    print([k for k in range(1, 3*10**5) if ok(k)]) # Michael S. Branicky, Dec 28 2022

Extensions

More terms from Ryan Propper, Sep 09 2005
a(12) from Donovan Johnson, Aug 28 2013
a(13) from Giovanni Resta, Aug 30 2013

A133375 Catalan numbers with digits sorted in increasing order and zeros suppressed.

Original entry on oeis.org

1, 1, 2, 5, 14, 24, 123, 249, 134, 2468, 16679, 56788, 1228, 2479, 244467, 4456899, 3355677, 12446799, 3467778, 112366779, 12244566, 222446667, 1234456689, 1333455669, 112234447899
Offset: 0

Views

Author

Jonathan Vos Post, Dec 21 2007

Keywords

Comments

This is to A000108 as A135374 is to A000225 and as A078726 is to A000215. Of the values through a(24), the only primes are the two prime Catalan numbers 2 and 5. What is the first prime in this sequence which is not an untransformed Catalan number?

Crossrefs

Programs

  • Mathematica
    FromDigits[Sort[IntegerDigits[#]]]&/@CatalanNumber[Range[0,30]] (* Harvey P. Dale, Feb 26 2015 *)

Formula

A004185(A000108(n)) = A004185((2n)!/(n!(n+1)!)).
Previous Showing 41-42 of 42 results.