cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A076786 Squarefree numbers such that in decimal representation all their prefixes are also squarefree.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 130, 131, 133, 134, 137
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 16 2002

Keywords

Comments

m is a term iff A008966(floor(m/10^k))=1 for 0<=k<=A004216(n);
a(n)=A005117(n) for n<=26, but A005117(27)=41 is not a term, as 4=2^2 is not squarefree.

Examples

			143=11*13 is a term, as also 14=2*7 and 1 are squarefree.
		

Programs

  • Mathematica
    Select[Range[200],AllTrue[FromDigits/@Table[Take[IntegerDigits[#],{1,n}],{n,IntegerLength[#]}],SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 23 2020 *)

A077429 a(n) = floor(log_10(n^2)).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 05 2002

Keywords

Comments

a(n) = A004216(n^2).

Crossrefs

Programs

  • Mathematica
    Table[Floor[Log10[n^2]],{n,120}] (* Harvey P. Dale, Sep 17 2020 *)

A123119 Number of digits in sum of first n primes (A007504).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Jonathan Vos Post, Sep 28 2006

Keywords

Comments

Since A007504(n) has the asymptotic expression ~ n^2 * log(n) / 2, a(n) has the asymptotic expression n^2 * log(n) / 2 = floor(log_10(10* n^2 * log(n) / 2)) = floor(log_10(5* n^2 * log(n))) = floor(log_10(5) + log_10(n^2) + log_10(log(n))) = floor(0.698970004 + 2*log_10(n) + log_10(log(n))). What is the smallest n such that a(n) = 5, 6, 7, ...?

Examples

			a(3) = 2 because 2 + 3 + 5 = 10 has 2 digits in its decimal expansion.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Floor[ Log[10, Sum[Prime@i, {i, n}]] + 1]; Array[f, 105] (* Robert G. Wilson v *)
    f[n_] := IntegerLength[Total[Prime[Range[n]]]]; Array[f, 105] (* Jan Mangaldan, Jan 04 2017 *)
    IntegerLength/@Accumulate[Prime[Range[110]]] (* Harvey P. Dale, Jan 26 2019 *)

Formula

a(n) = A055642(A007504(n)) = floor(log_10(10*A007504(n))) = A004216(A007504(n)) + 1 = A004218(A007504(n) + 1).

Extensions

More terms from Robert G. Wilson v, Oct 05 2006

A118115 Partial sums of n concatenated n times.

Original entry on oeis.org

1, 23, 356, 4800, 60355, 727021, 8504798, 97393686, 1097393685, 10101010102107494695, 1121212121213218605806, 122333333333334430727018, 13253646464646465743858331, 1427395060606060607157999745, 152942546575757575758673151260, 16314558708191919191920289312876
Offset: 1

Views

Author

Jonathan Vos Post, May 11 2006

Keywords

Examples

			a(2) = 1 + 22 = 23 is prime.
a(6) = 1 + 22 + 333 + 4444 + 55555 + 666666 = 727021 is prime.
For what value of n is the next prime a(n)?
a(158), which has 474 digits, is prime. - _Harvey P. Dale_, Oct 17 2011
		

References

  • F. Smarandache, "Properties of the numbers", Univ. of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ.

Crossrefs

Cf. A000461 (concatenate n n times), A004216, A048376, A053422.

Programs

  • Mathematica
    Accumulate[FromDigits/@Table[Flatten[IntegerDigits/@PadLeft[{},n,n]], {n,15}]] (* Harvey P. Dale, Oct 17 2011 *)

Formula

a(n) = Sum_{i=1..n} A000461(i). a(n) = Sum_{i=1..n} i*(10^(i*L(i))-1)/(10^L(i)-1) where L(i) = A004216(i) + 1 = floor(log_10(10i)).

A118117 Concatenate n F(n) times.

Original entry on oeis.org

1, 2, 33, 444, 55555, 66666666, 7777777777777, 888888888888888888888, 9999999999999999999999999999999999, 10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010
Offset: 1

Views

Author

Jonathan Vos Post, May 11 2006

Keywords

Comments

A000461 Concatenate n n times.

Examples

			a(6) = 6 concatenated F(6) times = 6 concatenated 8 times = 66666666, where F(n) = the n-th Fibonacci number.
		

References

  • F. Smarandache, "Properties of the numbers", Univ. of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ.

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits/@PadRight[{},Fibonacci[n],n]]],{n,10}] (* Harvey P. Dale, Aug 09 2020 *)

Formula

a(n) = n concatenated A000045(n) times. a(n) = A000027(n) concatenated A000045(n) times.

A211665 Minimal number of iterations of log_10 applied to n until the result is < 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A055642 and A138902, cf. Example.
Instead the real-valued log function one can consider only the integer part (i.e., A004216), since log_b(x) < k <=> x < b^k <=> floor(x) < b^k for any integer k >= 0; that's also why the first 2, 3, 4, ... appears exactly for 10, 10^10, 10^(10^10) etc. - M. F. Hasler, Dec 12 2018

Examples

			a(n) = 1, 2, 3, 4 for n = 1, 10, 10^10, 10^(10^10), i.e., n = 1, 10, 10000000000, 10^10000000000.
a(n) = 2 for all n >= 10, n < 10^10.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Length[NestWhileList[Log10, n, # >= 1 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    a(n,i=1)={while(n=logint(n,10),i++);i} \\ M. F. Hasler, Dec 07 2018

Formula

With E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n)))...))); E_{i=1..0} := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we have:
a(E_{i=1..n} 10) = a(E_{i=1..n-1} 10) + 1, for n >= 1.
G.f.: g(x) = (1/(1-x))*Sum_{k>=0} x^(E_{i=1..k} 10) = (x + x^10 + x^(10^10) + ...)/(1-x).

Extensions

Name reworded by M. F. Hasler, Dec 12 2018

A333128 Ending position of the first occurrence of n in the decimal expansion of Pi.

Original entry on oeis.org

33, 2, 7, 1, 3, 5, 8, 14, 12, 6, 51, 96, 150, 112, 3, 5, 42, 97, 426, 39, 55, 95, 137, 18, 294, 91, 8, 30, 35, 188, 66, 2, 17, 26, 88, 11, 287, 48, 19, 45, 72, 4, 94, 25, 61, 62, 21, 121, 89, 59, 33, 50, 174, 10, 193, 132, 212, 406, 12, 6, 129, 221, 22, 314
Offset: 0

Views

Author

Francesco Vissani, Apr 08 2020

Keywords

Comments

Variant of A032445, considering the position of the least-significant digit of n in the decimal expansion of Pi (A000796).

Crossrefs

Programs

  • Mathematica
    n = 1000;
    intPi = Ceiling[N[Pi, n]*10^(n-1)];
    piString = ToString[intPi];
    Table[StringPosition[piString, ToString[n]][[1, 2]] , {n, 0, 70}]

Formula

a(n) = A032445(n) for n=0..9.
a(n) = 1 + A032445(n) for n = 10..99.
a(n) = A004216(n) + A032445(n).

A348960 a(n) = floor(log_10(Pi*n!)).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 31, 32, 34, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 54, 56, 58, 59, 61, 63, 64, 66, 68, 70, 71, 73, 75, 77, 78, 80, 82, 84, 85, 87, 89, 91, 93, 95, 96, 98, 100
Offset: 0

Views

Author

Paul F. Marrero Romero, Nov 05 2021

Keywords

Crossrefs

Programs

Formula

a(n) = floor(log_10(Pi*n!)).
a(n) = floor(A053511 + log_10(n!)).

A371672 a(n) = floor(log_phi(n)) with phi = A001622.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[IntegerPart[Log[n]/Log[GoldenRatio]],{n,1,130}]
Previous Showing 21-29 of 29 results.