A013988 Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0).
1, 5, 1, 55, 15, 1, 935, 295, 30, 1, 21505, 7425, 925, 50, 1, 623645, 229405, 32400, 2225, 75, 1, 21827575, 8423415, 1298605, 103600, 4550, 105, 1, 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1, 42061737025, 17398082625, 3016869625, 289426830, 16929255, 621810, 14070, 180, 1
Offset: 1
Examples
Triangle begins as: 1; 5, 1; 55, 15, 1; 935, 295, 30, 1; 21505, 7425, 925, 50, 1; 623645, 229405, 32400, 2225, 75, 1; 21827575, 8423415, 1298605, 103600, 4550, 105, 1; 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Programs
-
Magma
function T(n,k) // T = A013988 if k eq 0 then return 0; elif k eq n then return 1; else return (6*(n-1)-k)*T(n-1,k) + T(n-1,k-1); end if; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
Mathematica
(* First program *) rows = 10; b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]]; A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs; A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1,k] +T[n-1, k-1]]]; Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 03 2023 *)
-
Sage
# uses[inverse_bell_matrix from A264428] # Adds 1,0,0,0, ... as column 0 at the left side of the triangle. inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
A157402 A partition product of Stirling_2 type [parameter k = 2] with biggest-part statistic (triangle read by rows).
1, 1, 2, 1, 6, 10, 1, 24, 40, 80, 1, 80, 300, 400, 880, 1, 330, 2400, 3600, 5280, 12320, 1, 1302, 15750, 47600, 55440, 86240, 209440, 1, 5936, 129360, 588000, 837760, 1034880, 1675520, 4188800, 1, 26784, 1146040, 5856480
Offset: 1
Comments
Links
- Peter Luschny, Counting with Partitions.
- Peter Luschny, Generalized Stirling_2 Triangles.
Crossrefs
Formula
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(3*j - 1).
A049404 Triangle read by rows, the Bell transform of n!*binomial(2,n) (without column 0).
1, 2, 1, 2, 6, 1, 0, 20, 12, 1, 0, 40, 80, 20, 1, 0, 40, 360, 220, 30, 1, 0, 0, 1120, 1680, 490, 42, 1, 0, 0, 2240, 9520, 5600, 952, 56, 1, 0, 0, 2240, 40320, 48720, 15120, 1680, 72, 1, 0, 0, 0, 123200, 332640, 184800, 35280, 2760, 90, 1, 0, 0, 0, 246400, 1786400
Offset: 1
Comments
Previous name was: A triangle of numbers related to triangle A049324.
a(n,1) = A008279(2,n-1). a(n,m) =: S1(-2; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m) = A008275 (signed Stirling first kind), S1(2; n,m) = A008297(n,m) (signed Lah numbers).
a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A004747(n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016
Examples
E.g. row polynomial E(3,x) = 2*x+6*x^2+x^3. Triangle starts: {1} {2, 1} {2, 6, 1} {0, 20, 12, 1}
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- W. Lang, First 10 rows of the array and more. [From _Wolfdieter Lang_, Oct 17 2008]
- Peter Luschny, The Bell transform
Programs
-
Mathematica
rows = 11; a[n_, m_] := BellY[n, m, Table[k! Binomial[2, k], {k, 0, rows}]]; Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Sage
# uses[bell_matrix from A264428] # Adds 1,0,0,0, ... as column 0 at the left side of the triangle. bell_matrix(lambda n: factorial(n)*binomial(2, n), 8) # Peter Luschny, Jan 16 2016
Formula
a(n, m) = n!*A049324(n, m)/(m!*3^(n-m));
a(n, m) = (3*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1;
a(n, m) = 0, n
E.g.f. for m-th column: ((x+x^2+(x^3)/3)^m)/m!.
a(n,m) = n!/(3^m * m!)*(Sum_{i=0..floor(m-n/3)} (-1)^i * binomial(m,i) * binomial(3*m-3*i,n)), 0 for empty sums. - Werner Schulte, Feb 20 2020
Extensions
New name from Peter Luschny, Jan 16 2016
A144275 Lower triangular array called S2hat(-2) related to partition number array A144274.
1, 2, 1, 10, 2, 1, 80, 14, 2, 1, 880, 100, 14, 2, 1, 12320, 1140, 108, 14, 2, 1, 209440, 14880, 1180, 108, 14, 2, 1, 4188800, 249280, 15400, 1196, 108, 14, 2, 1, 96342400, 4801280, 255400, 15480, 1196, 108, 14, 2, 1, 2504902400, 108574400, 4888960, 256440, 15512
Offset: 1
Comments
Examples
Triangle begins: [1]; [2,1]; [10,2,1]; [80,14,2,1]; [880,100,14,2,1]; ...
Links
- Wolfdieter Lang, First 10 rows of the array and more.
- Wolfdieter Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Formula
a(n,m) = Sum_{q=1..p(n,m)} (Product_{j=1..n} |S2(-2;j,1)|^e(n,m,q,j)) if n>=m>=1, else 0. Here p(n,m) = A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S2(-2,n,1)|= A004747(n,1) = A008544(n-1) = (3*n-4)(!^3) (3-factorials) for n>=2 and 1 if n=1.
A203412 Triangle read by rows, a(n,k), n>=k>=1, which represent the s=3, h=1 case of a two-parameter generalization of Stirling numbers arising in conjunction with normal ordering.
1, 1, 1, 4, 3, 1, 28, 19, 6, 1, 280, 180, 55, 10, 1, 3640, 2260, 675, 125, 15, 1, 58240, 35280, 10360, 1925, 245, 21, 1, 1106560, 658000, 190680, 35385, 4620, 434, 28, 1, 24344320, 14266560, 4090240, 756840, 100065, 9828, 714, 36, 1
Offset: 1
Comments
Also the Bell transform of the triple factorial numbers A007559 which adds a first column (1,0,0 ...) on the left side of the triangle. For the definition of the Bell transform see A264428. See A051141 for the triple factorial numbers A032031 and A004747 for the triple factorial numbers A008544 as well as A039683 and A132062 for the case of double factorial numbers. - Peter Luschny, Dec 23 2015
Examples
Triangle starts: [ 1] [ 1, 1] [ 4, 3, 1] [ 28, 19, 6, 1] [ 280, 180, 55, 10, 1] [ 3640, 2260, 675, 125, 15, 1] [58240, 35280, 10360, 1925, 245, 21, 1]
Links
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- T. Mansour, M. Schork, and M. Shattuck, On a new family of generalized Stirling and Bell numbers, Electron. J. Combin. 18 (2011) #P77 (33 pp.).
- Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771.
Programs
-
Maple
A203412 := (n,k) -> (n!*3^n)/(k!*2^k)*add((-1)^j*binomial(k,j)*binomial(n-2*j/3-1, n), j=0..k): seq(seq(A203412(n,k),k=1..n),n=1..9); # Peter Luschny, Dec 21 2015
-
Mathematica
Table[(n! 3^n)/(k! 2^k) Sum[ (-1)^j Binomial[k, j] Binomial[n - 2 j/3 - 1, n], {j, 0, k}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Dec 23 2015 *)
-
Sage
# uses[bell_transform from A264428] triplefactorial = lambda n: prod(3*k + 1 for k in (0..n-1)) def A203412_row(n): trifact = [triplefactorial(k) for k in (0..n)] return bell_transform(n, trifact) [A203412_row(n) for n in (0..8)] # Peter Luschny, Dec 21 2015
Formula
(1) Is given by the recurrence relation
a(n+1,k) = a(n,k-1)+(3*n-2*k)*a(n,k) if n>=0 and k>=1, along with the initial values a(n,0) = delta_{n,0} and a(0,k) = delta_{0,k} for all n,k>=0.
(2) Is given explicitly by
a(n,k) = (n!*3^n)/(k!*2^k)*Sum{j=0..k} (-1)^j*C(k,j)*C(n-2*j/3-1,n) for all n>=k>=1.
a(n,1) = A007559(n-1). - Peter Luschny, Dec 21 2015
A265606 Triangle read by rows: The Bell transform of the quartic factorial numbers (A007696).
1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 45, 23, 6, 1, 0, 585, 275, 65, 10, 1, 0, 9945, 4435, 990, 145, 15, 1, 0, 208845, 89775, 19285, 2730, 280, 21, 1, 0, 5221125, 2183895, 456190, 62965, 6370, 490, 28, 1, 0, 151412625, 62002395, 12676265, 1715490, 171255, 13230, 798, 36, 1
Offset: 0
Examples
[1], [0, 1], [0, 1, 1], [0, 5, 3, 1], [0, 45, 23, 6, 1], [0, 585, 275, 65, 10, 1], [0, 9945, 4435, 990, 145, 15, 1], [0, 208845, 89775, 19285, 2730, 280, 21, 1],
Links
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Peter Luschny, The Bell transform
Crossrefs
Programs
-
Mathematica
(* The function BellMatrix is defined in A264428. *) rows = 10; M = BellMatrix[Pochhammer[1/4, #] 4^# &, rows]; Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 23 2019 *)
-
Sage
# uses[bell_transform from A264428] def A265606_row(n): multifact_4_1 = lambda n: prod(4*k + 1 for k in (0..n-1)) mfact = [multifact_4_1(k) for k in (0..n)] return bell_transform(n, mfact) [A265606_row(n) for n in (0..7)]
Comments