A383414 Array read by ascending antidiagonals: A(n,k) = 4^n*(8*k + 7).
7, 28, 15, 112, 60, 23, 448, 240, 92, 31, 1792, 960, 368, 124, 39, 7168, 3840, 1472, 496, 156, 47, 28672, 15360, 5888, 1984, 624, 188, 55, 114688, 61440, 23552, 7936, 2496, 752, 220, 63, 458752, 245760, 94208, 31744, 9984, 3008, 880, 252, 71, 1835008, 983040, 376832, 126976, 39936, 12032, 3520, 1008, 284, 79
Offset: 0
Examples
The array begins as: 7, 15, 23, 31, 39, 47, ... 28, 60, 92, 124, 156, 188, ... 112, 240, 368, 496, 624, 752, ... 448, 960, 1472, 1984, 2496, 3008, ... 1792, 3840, 5888, 7936, 9984, 12032, ... 7168, 15360, 23552, 31744, 39936, 48128, ... 28672, 61440, 94208, 126976, 159744, 192512, ... ...
References
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 12.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 246-247.
Crossrefs
Programs
-
Mathematica
A[n_,k_]:=4^n(8k+7); Table[A[n-k,k],{n,0,9},{k,0,n}]//Flatten
Comments