cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A383414 Array read by ascending antidiagonals: A(n,k) = 4^n*(8*k + 7).

Original entry on oeis.org

7, 28, 15, 112, 60, 23, 448, 240, 92, 31, 1792, 960, 368, 124, 39, 7168, 3840, 1472, 496, 156, 47, 28672, 15360, 5888, 1984, 624, 188, 55, 114688, 61440, 23552, 7936, 2496, 752, 220, 63, 458752, 245760, 94208, 31744, 9984, 3008, 880, 252, 71, 1835008, 983040, 376832, 126976, 39936, 12032, 3520, 1008, 284, 79
Offset: 0

Views

Author

Stefano Spezia, Apr 26 2025

Keywords

Examples

			The array begins as:
      7,    15,    23,     31,     39,     47, ...
     28,    60,    92,    124,    156,    188, ...
    112,   240,   368,    496,    624,    752, ...
    448,   960,  1472,   1984,   2496,   3008, ...
   1792,  3840,  5888,   7936,   9984,  12032, ...
   7168, 15360, 23552,  31744,  39936,  48128, ...
  28672, 61440, 94208, 126976, 159744, 192512, ...
  ...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 12.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 246-247.

Crossrefs

Cf. A000302, A004215, A383415 (antidiagonal sums).
Row n=0 gives A004771.
Column k=0 gives A002042.

Programs

  • Mathematica
    A[n_,k_]:=4^n(8k+7); Table[A[n-k,k],{n,0,9},{k,0,n}]//Flatten

Formula

A(n,k) = A000302(n)*A004771(k).
G.f.: (7 + y)/((1 - 4*x)*(1 - y)^2).
E.g.f.: exp(4*x+y)*(7 + 8*y).

A133655 a(n) = 2*A016777(n) + A016777(n-1) - (n+1).

Original entry on oeis.org

1, 7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 119, 127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 255, 263, 271, 279, 287, 295, 303, 311, 319, 327, 335, 343, 351, 359, 367, 375, 383, 391, 399, 407, 415
Offset: 0

Views

Author

Gary W. Adamson, Sep 20 2007

Keywords

Examples

			a(3) = 23 = 2*A016777(3) + A016777(2) - 4 = 2*10 + 7 - 4.
a(3) = 23 = (1, 3, 3, 1) dot (1, 6, 2, -2) = (1, 18, 6, -2).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2 x^2+5 x+1)/(x-1)^2,{x,0,60}],x] (* Harvey P. Dale, Sep 13 2011 *)

Formula

Equals "1" followed by A004771.
Binomial transform of [1, 6, 2, -2, 2, -2, 2, ...].
G.f.: (2*x^2+5*x+1)/(x-1)^2. - Harvey P. Dale, Sep 13 2011

Extensions

More terms and corrected definition from R. J. Mathar, Jun 08 2008

A294081 Number of partitions of n into three squares and two nonnegative 7th powers.

Original entry on oeis.org

1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 4, 4, 3, 3, 3, 2, 2, 3, 5, 5, 4, 3, 3, 2, 2, 3, 5, 6, 4, 4, 3, 3, 2, 3, 5, 5, 5, 4, 5, 3, 3, 4, 5, 5, 3, 4, 4, 3, 2, 3, 6, 7, 6, 5, 6, 5, 4, 3, 4, 5, 3, 4, 4, 4, 3, 4, 7, 7, 6, 5, 5, 3, 3, 4, 7, 7, 6, 5, 4, 3, 2, 5, 7, 8, 5, 5, 6
Offset: 0

Views

Author

XU Pingya, Feb 09 2018

Keywords

Comments

4^i(8j + 7) - 1^7 - 1^7 == 5 (mod 8) (when i = 0), or 2 (when i = 1), or 6 (when i >= 2). Thus, each nonnegative integer can be written as a sum of three squares and two nonnegative 7th powers; i.e., a(n) > 0.
More generally, each nonnegative integer can be written as a sum of three squares and a nonnegative k-th power and a nonnegative m-th power.

Examples

			7 = 0^2 + 1^2 + 2^2 + 1^7 + 1^7 = 1^2 + 1^1 + 2^2 + 0^7 + 1^7, a(7) = 2.
10 = 0^2 + 0^2 + 3^2 + 0^7 + 1^7 = 0^2 + 1^1 + 3^2 + 0^7 + 0^7 = 0^2 + 2^2 + 2^2 + 1^7 + 1^7 = 1^2 + 2^1 + 2^2 + 0^7 + 1^7, a(10) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[x^2+y^2+z^2+u^7+v^7==n, 1, 0], {x,0,n^(1/2)}, {y,x,(n-x^2)^(1/2)}, {z,y,(n-x^2-y^2)^(1/2)}, {u,0,(n-x^2-y^2-z^2)^(1/7)}, {v,u,(n-x^2-y^2-z^2-u^7)^(1/7)}]
    Table[a[n], {n,0,86}]

A336194 Table read by antidiagonals upwards: T(n,k) = (n - 1)*k^3 - 1, with n > 1 and k > 0.

Original entry on oeis.org

0, 1, 7, 2, 15, 26, 3, 23, 53, 63, 4, 31, 80, 127, 124, 5, 39, 107, 191, 249, 215, 6, 47, 134, 255, 374, 431, 342, 7, 55, 161, 319, 499, 647, 685, 511, 8, 63, 188, 383, 624, 863, 1028, 1023, 728, 9, 71, 215, 447, 749, 1079, 1371, 1535, 1457, 999, 10, 79, 242, 511, 874, 1295, 1714, 2047, 2186, 1999, 1330
Offset: 2

Views

Author

Stefano Spezia, Jul 11 2020

Keywords

Comments

T(n, k) is a sharp upper bound of the tree width of a graph G that does not contain a clique on n vertices nor a minimal separator of size larger than k (see Theorem 2.1 in Pilipczuk et al.).
All the square matrices starting at top left of the table T are singular except for the 2 X 2 submatrix: det([0, 7; 1, 15]) = -7.

Examples

			The table starts at row n = 2 and column k = 1 as:
0   7   26   63  124   215 ...
1  15   53  127  249   431 ...
2  23   80  191  374   647 ...
3  31  107  255  499   863 ...
4  39  134  319  624  1079 ...
5  47  161  383  749  1295 ...
...
		

Crossrefs

Cf. A000578, A001093, A001477 (k = 1), A004771 (k = 2), A068601 (n = 2), A085537, A109129, A123865 (main diagonal), A325543, A325612.

Programs

  • Mathematica
    T[n_,k_]:=(n-1)*k^3-1; Flatten[Table[T[n+1-k,k],{n,2,12},{k,1,n-1}]]
  • PARI
    T(n, k) = (n - 1)*k^3 - 1

Formula

O.g.f.: x^2*y*(y*(7 - 2*y + y^2) + x*(1 - y)^3)/((1 - x)^2*(1 - y)^4).
E.g.f.: -1 + exp(x) - x + exp(y)*x + exp(y)*(1 + y + 3*y^2 + y^3) + exp(x + y)*(-1 +(-1 + x)*y*(1 + 3*y + y^2)).
T(n, k) = n*A000578(k) - A001093(k).
T(n, n) = A085537(n) - 1 for n > 1.
T(n, k) = T(n+1, 1)*T(2, k) + T(n, 1).
Previous Showing 41-44 of 44 results.