A112651 Numbers k such that k^2 == k (mod 11).
0, 1, 11, 12, 22, 23, 33, 34, 44, 45, 55, 56, 66, 67, 77, 78, 88, 89, 99, 100, 110, 111, 121, 122, 132, 133, 143, 144, 154, 155, 165, 166, 176, 177, 187, 188, 198, 199, 209, 210, 220, 221, 231, 232, 242, 243, 253, 254, 264, 265, 275, 276, 286, 287, 297, 298
Offset: 1
Examples
12 is a term because 12*12 = 144 == 1 (mod 11) and 12 == 1 (mod 11).
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Maple
m = 11 for n = 1 to 300 if n^2 mod m = n mod m then print n; next n
-
Mathematica
Select[Range[0,300],PowerMod[#,2,11]==Mod[#,11]&] (* or *) LinearRecurrence[ {1,1,-1},{0,1,11},60] (* Harvey P. Dale, Apr 19 2015 *)
-
PARI
a(n)=11*n/2-31/4-9*(-1)^n/4 \\ Charles R Greathouse IV, Oct 16 2015
Formula
a(n) = 11*n - a(n-1) - 21 (with a(1)=0). - Vincenzo Librandi, Nov 13 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 11*n/2 - 31/4 - 9*(-1)^n/4.
G.f.: x^2*(1+10*x) / ( (1+x)*(x-1)^2 ). (End)
Extensions
Edited by N. J. A. Sloane, Aug 19 2010
Definition clarified by Harvey P. Dale, Apr 19 2015
Comments