cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A112651 Numbers k such that k^2 == k (mod 11).

Original entry on oeis.org

0, 1, 11, 12, 22, 23, 33, 34, 44, 45, 55, 56, 66, 67, 77, 78, 88, 89, 99, 100, 110, 111, 121, 122, 132, 133, 143, 144, 154, 155, 165, 166, 176, 177, 187, 188, 198, 199, 209, 210, 220, 221, 231, 232, 242, 243, 253, 254, 264, 265, 275, 276, 286, 287, 297, 298
Offset: 1

Views

Author

Jeremy Gardiner, Dec 28 2005

Keywords

Comments

Numbers that are congruent to {0,1} (mod 11). - Philippe Deléham, Oct 17 2011

Examples

			12 is a term because 12*12 = 144 == 1 (mod 11) and 12 == 1 (mod 11).
		

Crossrefs

Cf. A010880 (n mod 11), A070434 (n^2 mod 11).

Programs

  • Maple
    m = 11 for n = 1 to 300 if n^2 mod m = n mod m then print n; next n
  • Mathematica
    Select[Range[0,300],PowerMod[#,2,11]==Mod[#,11]&] (* or *) LinearRecurrence[ {1,1,-1},{0,1,11},60] (* Harvey P. Dale, Apr 19 2015 *)
  • PARI
    a(n)=11*n/2-31/4-9*(-1)^n/4 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = 11*n - a(n-1) - 21 (with a(1)=0). - Vincenzo Librandi, Nov 13 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 11*n/2 - 31/4 - 9*(-1)^n/4.
G.f.: x^2*(1+10*x) / ( (1+x)*(x-1)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*A005015(k-1) with A005015(-1)=1. - Philippe Deléham, Oct 17 2011

Extensions

Edited by N. J. A. Sloane, Aug 19 2010
Definition clarified by Harvey P. Dale, Apr 19 2015

A108732 a(0)=22; if n odd, a(n) = a(n-1)/2, otherwise a(n) = 4*a(n-1).

Original entry on oeis.org

22, 11, 44, 22, 88, 44, 176, 88, 352, 176, 704, 352, 1408, 704, 2816, 1408, 5632, 2816, 11264, 5632, 22528, 11264, 45056, 22528, 90112, 45056, 180224, 90112, 360448, 180224, 720896, 360448, 1441792, 720896
Offset: 0

Views

Author

Alexandre Wajnberg & Guadalupe Garcia, Jun 22 2005

Keywords

Comments

A108213 is a subsequence of this sequence and is also twice this sequence.

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[EvenQ[n],a/2,4a]}; NestList[nxt,{0,22},40][[All,2]] (* or *) LinearRecurrence[{0,2},{22,11},40] (* Harvey P. Dale, Jul 22 2021 *)

Formula

a(2n+1) = a(2n-2).
Recurrence: a(n) = 2a(n-2), a(0)=22, a(1)=11. G.f.: (22x+44)/(1-2x^2). - Ralf Stephan, Jul 16 2013
a(n) = 11 * 2^A028242(n). - Franklin T. Adams-Watters, Mar 29 2006

A140950 a(n) = A140944(n+1) - 3*A140944(n).

Original entry on oeis.org

1, -3, -1, 5, -6, 3, -11, 10, -12, -5, 21, -22, 20, -24, 11, -43, 42, -44, 40, -48, -21, 85, -86, 84, -88, 80, -96, 43, -171, 170, -172, 168, -176, 160, -192, -85, 341, -342, 340, -344, 336, -352, 320, -384, 171, -683, 682, -684, 680, -688
Offset: 0

Views

Author

Paul Curtz, Jul 25 2008

Keywords

Comments

Jacobsthal numbers appear twice: 1) A001045(n+2) signed, terms 0, 1, 3, 6, 10 (A000217); 2) A001045(n+1) signed, terms 0, 2, 5, 9 (n*(n+3)/2=A000096); between them are -3; 5, -6; -11, 10, -12; which appear (opposite sign) by rows in A140503 (1, -1, 2, 3, -2, 4) square.
Consider the permutation of the nonnegative numbers
0, 2, 5, 9, 14, 20, 27,
1, 3, 6, 10, 15, 21, 28,
4, 7, 11, 16, 22, 29,
8, 12, 17, 23, 30,
13, 18, 24, 31,
19, 25, 32,
26, 33,
34, etc.
The corresponding distribution of a(n) is
1, -1, 3, -5, 11, -21, 43,
-3, 5, -11, 21, -43, 85, -171,
-6, 10, -22, 42, -86, 170,
-12, 20, -44, 84, -172,
-24, 40, -88, 168,
-48, 80, -176,
-96, 160,
-192, etc.
Column sums: -2, -2, -10, -10, -42, -42, -170, ... duplicate of a bisection of -A078008(n+2).
b(n)= 1, -1, 3, -5, 11, 21, ... = (-1)^n*A001045(n+1) = A077925(n). Every row is b(n) or b(n+2) multiplied by 1, -1, -2, -4, -8, -16, ..., essentially -A011782(n).

Crossrefs

Programs

  • Mathematica
    T[0, 0] = 0; T[1, 0] = T[0, 1] = 1; T[0, n_] := T[0, n] = T[0, n - 1] + 2*T[0, n - 2]; T[d_, d_] = 0; T[d_, n_] := T[d, n] = T[d - 1, n + 1] - T[d - 1, n]; A140944 = Table[T[d, n], {d, 0, 10}, {n, 0, d}] // Flatten; a[n_] := A140944[[n + 2]] - 3*A140944[[n + 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 18 2014 *)

Extensions

More terms and a(19)=-48 instead of 42 corrected by Jean-François Alcover, Dec 22 2014

A383953 a(0) = 4, a(n) = 2*a(n-1) + (-1)^n.

Original entry on oeis.org

4, 7, 15, 29, 59, 117, 235, 469, 939, 1877, 3755, 7509, 15019, 30037, 60075, 120149, 240299, 480597, 961195, 1922389, 3844779, 7689557, 15379115, 30758229, 61516459, 123032917, 246065835, 492131669, 984263339, 1968526677, 3937053355, 7874106709, 15748213419, 31496426837
Offset: 0

Views

Author

Paul Curtz, Aug 19 2025

Keywords

Crossrefs

Bisections give A199210 and A072261.

Programs

  • Mathematica
    a[n_] := (11*2^n + (-1)^n)/3; Array[a, 34, 0] (* Amiram Eldar, Aug 20 2025 *)

Formula

a(n) = (11*2^n + (-1)^n)/3.
a(n) = A340627(n+1)/2.
a(n) = 2*A052997(n) + 1 for n >= 1.
a(n) = a(n-4) + 55*2^(n-4) for n >= 4.
G.f.: (3*x + 4)/((x + 1)*(1 - 2*x)).
E.g.f: (11*exp(2*x) + exp(-x))/3.
Previous Showing 11-14 of 14 results.