A097322
(2n)! divided by denominator of Taylor expansion of exp(cos(x)-1).
Original entry on oeis.org
1, 4, 1, 1, 4, 1, 1, 4, 1, 11, 4, 1, 1, 4, 11, 1, 4, 31, 1, 44, 29, 1, 4, 1, 11, 4, 29, 1, 4, 11, 1, 4, 31, 1, 1276, 1, 41, 4, 1, 11, 116, 1, 1, 292, 11, 1, 4, 31, 127571, 44, 1, 1, 4, 1, 319, 4, 41, 1, 4, 11, 1, 4, 899, 1, 44, 1, 1, 4, 29, 11, 4, 1, 1, 4, 583, 1, 4756, 361429
Offset: 1
A327005
T(n, k) = Sum_{i=1..n} BM[k][i] where BM is the BellMatrix(x -> x mod n) as defined in A264428. Square array read by ascending antidiagonals for n >= 1 and k >= 1.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 4, 0, 1, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 6, 21, 31, 0, 1, 0, 1, 2, 6, 20, 57, 0, 0, 1, 0, 1, 2, 6, 24, 101, 231, 379, 0, 1, 0, 1, 2, 6, 24, 100, 422, 1394, 0, 0, 1, 0, 1, 2, 6, 24, 105, 505, 2201, 5476, 6556, 0
Offset: 1
[1] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
[2] 1, 0, 1, 0, 4, 0, 31, 0, 379, 0, 6556, 0, ...
[3] 1, 0, 1, 2, 3, 21, 57, 231, 1394, 5476, 32616, 203105, ...
[4] 1, 0, 1, 2, 6, 20, 101, 422, 2201, 12560, 76846, 483892, ...
[5] 1, 0, 1, 2, 6, 24, 100, 505, 2620, 15383, 97480, 657305, ...
[6] 1, 0, 1, 2, 6, 24, 105, 504, 2759, 16186, 103494, 710384, ...
-
# BellMatrix is defined in A264428.
T := proc(n, k) BellMatrix(x -> modp(x, n), k): add(i, i in %[k]) end:
seq(seq(T(n-k+1,k), k=1..n), n=1..12);
A330041
Expansion of e.g.f. exp(cosh(exp(x) - 1) - 1).
Original entry on oeis.org
1, 0, 1, 3, 11, 55, 322, 2114, 15556, 127005, 1135374, 11011220, 115080825, 1288589757, 15379512670, 194796087841, 2608470709562, 36805935282625, 545626818921885, 8475730766054047, 137637670315066835, 2331584745107027528, 41122505417366272200
Offset: 0
-
g:= proc(n) option remember; `if`(n=0, 1, add(
binomial(2*n-1, 2*k-1) *g(n-k), k=1..n))
end:
b:= proc(n, m) option remember; `if`(n=0,
`if`(m::odd, 0, g(m/2)), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..22); # Alois P. Heinz, Jun 23 2023
-
nmax = 22; CoefficientList[Series[Exp[Cosh[Exp[x] - 1] - 1], {x, 0, nmax}], x] Range[0, nmax]!
A352145
Expansion of e.g.f. exp(-1 + cos(x) + sin(x)).
Original entry on oeis.org
1, 1, 0, -3, -5, 12, 71, 7, -1028, -2573, 14793, 100188, -128831, -3445791, -5741800, 113954461, 601512787, -3296210612, -41316895641, 37322755431, 2570678600548, 6983413204755, -149303353515823, -1080122148248420, 7405149869523649, 119115584584019713
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-1+cos(x)+sin(x))))
-
a(n) = if(n==0, 1, sum(k=1, n, (-1)^(k\2)*binomial(n-1, k-1)*a(n-k)));
A352465
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(2*n,2*k)^2 * k * a(n-k).
Original entry on oeis.org
1, 1, 19, 1576, 356035, 172499176, 154989443170, 234120771123513, 553941959716031715, 1945912976888526218512, 9731900583801946493234794, 66990924607889809703423378253, 617312916540194845307221190273098, 7439659538258619452171059589120614701
Offset: 0
-
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[2 n, 2 k]^2 k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 13}]
nmax = 26; Take[CoefficientList[Series[Exp[Sum[x^(2 k)/(2 k)!^2, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^2, {1, -1, 2}]
A363073
Number of set partitions of [n] such that each element is contained in a block whose block size parity coincides with the parity of the element.
Original entry on oeis.org
1, 1, 0, 0, 1, 2, 0, 0, 20, 48, 0, 0, 1147, 3968, 0, 0, 173203, 709488, 0, 0, 53555964, 246505600, 0, 0, 28368601065, 148963383616, 0, 0, 24044155851601, 141410718244864, 0, 0, 30934515698084780, 198914201874983936, 0, 0, 57215369885233295955, 398742900995358584320
Offset: 0
a(0) = 1: (), the empty partition.
a(1) = 1: 1.
a(4) = 1: 1|24|3.
a(5) = 2: 135|24, 1|24|3|5.
a(8) = 20: 135|2468|7, 135|24|68|7, 137|2468|5, 137|24|5|68, 135|26|48|7, 135|28|46|7, 137|26|48|5, 137|28|46|5, 157|2468|3, 157|24|3|68, 1|2468|357, 1|24|357|68, 1|2468|3|5|7, 1|24|3|5|68|7, 157|26|3|48, 157|28|3|46, 1|26|357|48, 1|28|357|46, 1|26|3|48|5|7, 1|28|3|46|5|7.
-
b:= proc(n, t) option remember; `if`(n=0, 1, add(
`if`((j+t)::even, b(n-j, t)*binomial(n-1, j-1), 0), j=1..n))
end:
a:= n-> (h-> b(n-h, 1)*b(h, 0))(iquo(n, 2)):
seq(a(n), n=0..40);
-
b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[If[EvenQ[j + t], b[n - j, t]* Binomial[n - 1, j - 1], 0], {j, 1, n}]];
a[n_] := b[n - #, 1]*b[#, 0]&[Quotient[n, 2]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 18 2023, after Alois P. Heinz *)
A292966
a(n) = (2*n)! * [x^(2*n)] exp(n*(cosh(x)-1)).
Original entry on oeis.org
1, 1, 14, 543, 41332, 5203880, 979067634, 257327195587, 90055440034760, 40484356990454979, 22735298894247204310, 15597865046044378254146, 12836943134715746781979644, 12482280872844033169540407253, 14157380505669130674125989779482, 18524549200247005824873100782063015
Offset: 0
-
Table[(2 n)! SeriesCoefficient[Exp[n (Cosh[x] - 1)], {x, 0, 2 n}], {n, 0, 15}]
Table[(-1)^n (2 n)! SeriesCoefficient[Exp[n (Cos[x] - 1)], {x, 0, 2 n}], {n, 0, 15}]
A302579
Expansion of e.g.f. exp(cosh(x)/cos(x)-1) (even powers only).
Original entry on oeis.org
1, 2, 24, 632, 28784, 1991552, 193410624, 24993180032, 4134783110144, 850499728758272, 212579274719007744, 63381008507902595072, 22200896917210834817024, 9019985888570141052280832, 4204783981520054371872374784, 2228007853953954434037178007552
Offset: 0
exp(cosh(x)/cos(x)-1) = 1 + 2*x^2/2! + 24*x^4/4! + 632*x^6/6! + 28784*x^8/8! + ...
-
nmax = 15; Table[(CoefficientList[Series[Exp[Cosh[x]/Cos[x] - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A331818
E.g.f.: exp(1 - sec(x)) (even powers only).
Original entry on oeis.org
1, -1, -2, -1, 253, 12854, 668053, 39148199, 2456262898, 130790155859, -3853032641387, -4312625669814166, -1531200886955161127, -489884373969089299201, -159097972223555719000922, -54064488830901650420384521, -19284261543086608770504566147
Offset: 0
-
nmax = 16; Table[(CoefficientList[Series[Exp[1 - Sec[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
a[0] = 1; a[n_] := a[n] = -Sum[Binomial[2 n - 1, 2 k - 1] Abs[EulerE[2 k]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]
-
a(n) = {polcoef(serlaplace(exp(1 - 1/cos(x + O(x^(2*n + 1))))), 2*n)} \\ Andrew Howroyd, Jan 27 2020
A372508
Expansion of e.g.f. exp(sinh(x)) - exp(cosh(x) - 1).
Original entry on oeis.org
0, 1, 0, 2, 1, 12, 6, 128, 78, 1872, 1613, 37600, 38336, 990784, 1124280, 32333824, 41622181, 1272660224, 1843050734, 59527313920, 94591980910, 3252626013184, 5602035320753, 204354574172160, 380190518533920, 14594815769038848, 29179899891380592, 1174376539738169344
Offset: 0
-
nmax = 27; CoefficientList[Series[Exp[Sinh[x]] - Exp[Cosh[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
Comments