cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A097322 (2n)! divided by denominator of Taylor expansion of exp(cos(x)-1).

Original entry on oeis.org

1, 4, 1, 1, 4, 1, 1, 4, 1, 11, 4, 1, 1, 4, 11, 1, 4, 31, 1, 44, 29, 1, 4, 1, 11, 4, 29, 1, 4, 11, 1, 4, 31, 1, 1276, 1, 41, 4, 1, 11, 116, 1, 1, 292, 11, 1, 4, 31, 127571, 44, 1, 1, 4, 1, 319, 4, 41, 1, 4, 11, 1, 4, 899, 1, 44, 1, 1, 4, 29, 11, 4, 1, 1, 4, 583, 1, 4756, 361429
Offset: 1

Views

Author

Ralf Stephan, Aug 08 2004

Keywords

Crossrefs

Equals A010050(n) / A047690(n).
Cf. A005046.

Programs

  • PARI
    a(n)=(2*n)!/denominator(polcoeff(Ser(exp(cos(x)-1)),2*n))

A327005 T(n, k) = Sum_{i=1..n} BM[k][i] where BM is the BellMatrix(x -> x mod n) as defined in A264428. Square array read by ascending antidiagonals for n >= 1 and k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 4, 0, 1, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 6, 21, 31, 0, 1, 0, 1, 2, 6, 20, 57, 0, 0, 1, 0, 1, 2, 6, 24, 101, 231, 379, 0, 1, 0, 1, 2, 6, 24, 100, 422, 1394, 0, 0, 1, 0, 1, 2, 6, 24, 105, 505, 2201, 5476, 6556, 0
Offset: 1

Views

Author

Peter Luschny, Aug 13 2019

Keywords

Comments

Rows converge to the main diagonal A327006.

Examples

			[1] 1, 0, 0, 0, 0,  0,   0,   0,    0,     0,      0,      0, ...
[2] 1, 0, 1, 0, 4,  0,  31,   0,  379,     0,   6556,      0, ...
[3] 1, 0, 1, 2, 3, 21,  57, 231, 1394,  5476,  32616, 203105, ...
[4] 1, 0, 1, 2, 6, 20, 101, 422, 2201, 12560,  76846, 483892, ...
[5] 1, 0, 1, 2, 6, 24, 100, 505, 2620, 15383,  97480, 657305, ...
[6] 1, 0, 1, 2, 6, 24, 105, 504, 2759, 16186, 103494, 710384, ...
		

Crossrefs

A005046 is a bisection of row 2. Main diagonal is A327006.
Cf. A264428.

Programs

  • Maple
    # BellMatrix is defined in A264428.
    T := proc(n, k) BellMatrix(x -> modp(x, n), k): add(i, i in %[k]) end:
    seq(seq(T(n-k+1,k), k=1..n), n=1..12);

A330041 Expansion of e.g.f. exp(cosh(exp(x) - 1) - 1).

Original entry on oeis.org

1, 0, 1, 3, 11, 55, 322, 2114, 15556, 127005, 1135374, 11011220, 115080825, 1288589757, 15379512670, 194796087841, 2608470709562, 36805935282625, 545626818921885, 8475730766054047, 137637670315066835, 2331584745107027528, 41122505417366272200
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2019

Keywords

Comments

Stirling transform of A005046 (with interpolated zeros).
Exponential transform of A024430.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(2*n-1, 2*k-1) *g(n-k), k=1..n))
        end:
    b:= proc(n, m) option remember; `if`(n=0,
         `if`(m::odd, 0, g(m/2)), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..22);  # Alois P. Heinz, Jun 23 2023
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Cosh[Exp[x] - 1] - 1], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A024430(k) * a(n-k).

A352145 Expansion of e.g.f. exp(-1 + cos(x) + sin(x)).

Original entry on oeis.org

1, 1, 0, -3, -5, 12, 71, 7, -1028, -2573, 14793, 100188, -128831, -3445791, -5741800, 113954461, 601512787, -3296210612, -41316895641, 37322755431, 2570678600548, 6983413204755, -149303353515823, -1080122148248420, 7405149869523649, 119115584584019713
Offset: 0

Views

Author

Seiichi Manyama, Mar 15 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(-1+cos(x)+sin(x))))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, (-1)^(k\2)*binomial(n-1, k-1)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^floor(k/2) * binomial(n-1,k-1) * a(n-k).

A352465 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(2*n,2*k)^2 * k * a(n-k).

Original entry on oeis.org

1, 1, 19, 1576, 356035, 172499176, 154989443170, 234120771123513, 553941959716031715, 1945912976888526218512, 9731900583801946493234794, 66990924607889809703423378253, 617312916540194845307221190273098, 7439659538258619452171059589120614701
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[2 n, 2 k]^2 k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 13}]
    nmax = 26; Take[CoefficientList[Series[Exp[Sum[x^(2 k)/(2 k)!^2, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^2, {1, -1, 2}]

Formula

Sum_{n>=0} a(n) * x^(2*n) / (2*n)!^2 = exp( Sum_{n>=1} x^(2*n) / (2*n)!^2 ).
Sum_{n>=0} a(n) * x^(2*n) / (2*n)!^2 = exp( (BesselI(0,2*sqrt(x)) + BesselJ(0,2*sqrt(x))) / 2 - 1 ).

A363073 Number of set partitions of [n] such that each element is contained in a block whose block size parity coincides with the parity of the element.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 0, 0, 20, 48, 0, 0, 1147, 3968, 0, 0, 173203, 709488, 0, 0, 53555964, 246505600, 0, 0, 28368601065, 148963383616, 0, 0, 24044155851601, 141410718244864, 0, 0, 30934515698084780, 198914201874983936, 0, 0, 57215369885233295955, 398742900995358584320
Offset: 0

Views

Author

Alois P. Heinz, May 17 2023

Keywords

Comments

All odd elements are in blocks with an odd block size and all even elements are in blocks with an even block size.

Examples

			a(0) = 1: (), the empty partition.
a(1) = 1: 1.
a(4) = 1: 1|24|3.
a(5) = 2: 135|24, 1|24|3|5.
a(8) = 20: 135|2468|7, 135|24|68|7, 137|2468|5, 137|24|5|68, 135|26|48|7, 135|28|46|7, 137|26|48|5, 137|28|46|5, 157|2468|3, 157|24|3|68, 1|2468|357, 1|24|357|68, 1|2468|3|5|7, 1|24|3|5|68|7, 157|26|3|48, 157|28|3|46, 1|26|357|48, 1|28|357|46, 1|26|3|48|5|7, 1|28|3|46|5|7.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add(
         `if`((j+t)::even, b(n-j, t)*binomial(n-1, j-1), 0), j=1..n))
        end:
    a:= n-> (h-> b(n-h, 1)*b(h, 0))(iquo(n, 2)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[If[EvenQ[j + t], b[n - j, t]* Binomial[n - 1, j - 1], 0], {j, 1, n}]];
    a[n_] := b[n - #, 1]*b[#, 0]&[Quotient[n, 2]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 18 2023, after Alois P. Heinz *)

Formula

a(n) = A003724(ceiling(n/2)) * A005046(floor(n/4)) if (n mod 4) in {0,1}.
a(n) = 0 if (n mod 4) in {2,3}.

A292966 a(n) = (2*n)! * [x^(2*n)] exp(n*(cosh(x)-1)).

Original entry on oeis.org

1, 1, 14, 543, 41332, 5203880, 979067634, 257327195587, 90055440034760, 40484356990454979, 22735298894247204310, 15597865046044378254146, 12836943134715746781979644, 12482280872844033169540407253, 14157380505669130674125989779482, 18524549200247005824873100782063015
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2 n)! SeriesCoefficient[Exp[n (Cosh[x] - 1)], {x, 0, 2 n}], {n, 0, 15}]
    Table[(-1)^n (2 n)! SeriesCoefficient[Exp[n (Cos[x] - 1)], {x, 0, 2 n}], {n, 0, 15}]

A302579 Expansion of e.g.f. exp(cosh(x)/cos(x)-1) (even powers only).

Original entry on oeis.org

1, 2, 24, 632, 28784, 1991552, 193410624, 24993180032, 4134783110144, 850499728758272, 212579274719007744, 63381008507902595072, 22200896917210834817024, 9019985888570141052280832, 4204783981520054371872374784, 2228007853953954434037178007552
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Examples

			exp(cosh(x)/cos(x)-1) = 1 + 2*x^2/2! + 24*x^4/4! + 632*x^6/6! + 28784*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Exp[Cosh[x]/Cos[x] - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(cosh(x)/cos(x)-1).

A331818 E.g.f.: exp(1 - sec(x)) (even powers only).

Original entry on oeis.org

1, -1, -2, -1, 253, 12854, 668053, 39148199, 2456262898, 130790155859, -3853032641387, -4312625669814166, -1531200886955161127, -489884373969089299201, -159097972223555719000922, -54064488830901650420384521, -19284261543086608770504566147
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Exp[1 - Sec[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
    a[0] = 1; a[n_] := a[n] = -Sum[Binomial[2 n - 1, 2 k - 1] Abs[EulerE[2 k]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]
  • PARI
    a(n) = {polcoef(serlaplace(exp(1 - 1/cos(x + O(x^(2*n + 1))))), 2*n)} \\ Andrew Howroyd, Jan 27 2020

Formula

a(0) = 1; a(n) = -Sum_{k=1..n} binomial(2*n-1,2*k-1) * A000364(k) * a(n-k).

A372508 Expansion of e.g.f. exp(sinh(x)) - exp(cosh(x) - 1).

Original entry on oeis.org

0, 1, 0, 2, 1, 12, 6, 128, 78, 1872, 1613, 37600, 38336, 990784, 1124280, 32333824, 41622181, 1272660224, 1843050734, 59527313920, 94591980910, 3252626013184, 5602035320753, 204354574172160, 380190518533920, 14594815769038848, 29179899891380592, 1174376539738169344
Offset: 0

Views

Author

Ilya Gutkovskiy, May 04 2024

Keywords

Comments

Number of partitions of n-set into odd blocks minus number of partitions of n-set into even blocks.

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Exp[Sinh[x]] - Exp[Cosh[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
Previous Showing 31-40 of 40 results.