cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A347159 Sum of cubes of distinct prime divisors of n that are <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 8, 0, 8, 0, 8, 27, 8, 0, 35, 0, 8, 27, 8, 0, 35, 0, 8, 27, 8, 0, 35, 125, 8, 27, 8, 0, 160, 0, 8, 27, 8, 125, 35, 0, 8, 27, 133, 0, 35, 0, 8, 152, 8, 0, 35, 343, 133, 27, 8, 0, 35, 125, 351, 27, 8, 0, 160, 0, 8, 370, 8, 125, 35, 0, 8, 27, 476, 0, 35, 0, 8, 152
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^3 &, # <= Sqrt[n] && PrimeQ[#] &], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[Sum[Prime[k]^3 x^(Prime[k]^2)/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} prime(k)^3 * x^(prime(k)^2) / (1 - x^prime(k)).

A384815 Sum of the cubes of the exponents in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 8, 1, 2, 1, 27, 8, 2, 1, 9, 1, 2, 2, 64, 1, 9, 1, 9, 2, 2, 1, 28, 8, 2, 27, 9, 1, 3, 1, 125, 2, 2, 2, 16, 1, 2, 2, 28, 1, 3, 1, 9, 9, 2, 1, 65, 8, 9, 2, 9, 1, 28, 2, 28, 2, 2, 1, 10, 1, 2, 9, 216, 2, 3, 1, 9, 2, 3, 1, 35, 1, 2, 9, 9, 2, 3, 1, 65, 64, 2, 1, 10, 2, 2, 2, 28, 1, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[Plus @@ (#[[2]]^3 & /@ FactorInteger[n]), {n, 2, 90}]]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,2]^3); \\ Michel Marcus, Jun 10 2025

Formula

If n = Product (p_j^k_j) then a(n) = Sum (k_j^3).
From Amiram Eldar, Jul 03 2025: (Start)
Additive with a(p^e) = e^3.
Sum_{k=1..n} a(k) ~ n * log(log(n)) + B_3 * n + O(n/log(n)), where B_3 = gamma + Sum_{p prime} ((1-1/p)*Sum_{m>=1} m^3/p^m + log(1-1/p)) = 16.17021843694072992072..., and gamma is Euler's constant (A001620) (Duncan, 1962). (End)

A380098 Numbers whose sum of cubes of distinct prime factors is prime.

Original entry on oeis.org

165, 210, 390, 399, 420, 462, 495, 561, 570, 595, 615, 630, 651, 780, 798, 825, 840, 924, 957, 1050, 1085, 1140, 1170, 1173, 1197, 1218, 1235, 1245, 1260, 1302, 1386, 1435, 1470, 1482, 1485, 1495, 1554, 1560, 1596, 1615, 1680, 1683, 1705, 1710, 1767, 1771, 1815, 1845, 1848, 1885, 1890, 1938, 1950, 1953
Offset: 1

Views

Author

Rafik Khalfi, Jan 12 2025

Keywords

Examples

			165=3*5*11 and 3^3 + 5^3 + 11^3 = 1483, which is prime. Therefore, 165 is included.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local DPF: DPF:=factorset(n): if isprime(sum(DPF[j]^3, j=1..nops(DPF)))=true then n else fi end: seq(a(n), n=1..2000);
  • Mathematica
    Select[Range[2000], PrimeQ[Total[Transpose[FactorInteger[#]][[1]]^3]]&]
  • Python
    from sympy import isprime, factorint
    def ok(n): return isprime(sum(p**3 for p in factorint(n)))
    print([k for k in range(2000) if ok(k)]) # Michael S. Branicky, Jan 12 2025

A384816 Sum of the cubes of the indices of distinct prime factors of n.

Original entry on oeis.org

0, 1, 8, 1, 27, 9, 64, 1, 8, 28, 125, 9, 216, 65, 35, 1, 343, 9, 512, 28, 72, 126, 729, 9, 27, 217, 8, 65, 1000, 36, 1331, 1, 133, 344, 91, 9, 1728, 513, 224, 28, 2197, 73, 2744, 126, 35, 730, 3375, 9, 64, 28, 351, 217, 4096, 9, 152, 65, 520, 1001, 4913, 36, 5832, 1332, 72, 1, 243, 134, 6859, 344, 737, 92
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Plus @@ (PrimePi[#[[1]]]^3 & /@ FactorInteger[n]), {n, 70}]
    nmax = 70; CoefficientList[Series[Sum[k^3 x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = my(f=factor(n)[,1]); sum(k=1, #f~, primepi(f[k])^3); \\ Michel Marcus, Jun 10 2025

Formula

If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^3), where pi = A000720.
G.f.: Sum_{k>=1} k^3 * x^prime(k) / (1 - x^prime(k)).
Previous Showing 21-24 of 24 results.