A193629
Triangle T(n,k), n>=0, 0<=k<=C(n,2), read by rows: T(n,k) = number of k-length chains in the poset of Dyck paths of semilength n ordered by inclusion.
Original entry on oeis.org
1, 1, 2, 1, 5, 9, 7, 2, 14, 70, 176, 249, 202, 88, 16, 42, 552, 3573, 13609, 33260, 54430, 60517, 45248, 21824, 6144, 768, 132, 4587, 72490, 653521, 3785264, 15104787, 43358146, 91942710, 146186256, 175196202, 157630704, 104922224, 50152960, 16290560, 3221504
Offset: 0
Poset of Dyck paths of semilength n=3:
.
. A A:/\ B:
. | / \ /\/\
. B / \ / \
. / \
. C D C: D: E:
. \ / /\ /\
. E /\/ \ / \/\ /\/\/\
.
Chains of length k=0: A, B, C, D, E (5); k=1: A-B, A-C, A-D, A-E, B-C, B-D, B-E, C-E, D-E (9); k=2: A-B-C, A-B-D, A-B-E, A-C-E, A-D-E, B-C-E, B-D-E (7), k=3: A-B-C-E, A-B-D-E (2) => [5, 9, 7, 2].
Triangle begins:
: 1;
: 1;
: 2, 1;
: 5, 9, 7, 2;
: 14, 70, 176, 249, 202, 88, 16;
: 42, 552, 3573, 13609, 33260, 54430, 60517, 45248, ...
: 132, 4587, 72490, 653521, 3785264, 15104787, 43358146, 91942710, ...
-
d:= proc(x, y, l) option remember;
`if`(x<=1, [[l[], y]], [seq(d(x-1, i, [l[], y])[], i=x-1..y)])
end:
le:= proc(l1, l2) local i;
for i to nops(l1) do if l1[i]>l2[i] then return false fi od; true
end:
T:= proc(n) option remember; local h, l, m, g, r;
l:= d(n, n, []); m:= nops(l);
g:= proc(t) option remember; local r, d;
r:= [1];
for d to t-1 do if le(l[d], l[t]) then
r:= zip((x, y)->x+y, r, [0, g(d)[]], 0)
fi od; r
end;
r:= [];
for h to m do
r:= zip((x, y)->x+y, r, g(h), 0)
od; r[]
end:
seq(T(n), n=0..7);
A289778
Number T(n,k) of reduced decompositions for all permutations of [n] with exactly k inversions; triangle T(n,k), n>=0, 0<=k<=n*(n-1)/2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 6, 10, 14, 16, 16, 1, 4, 12, 30, 68, 132, 252, 412, 614, 768, 768, 1, 5, 20, 68, 210, 588, 1540, 3778, 8768, 19402, 40284, 78276, 137236, 219362, 292864, 292864, 1, 6, 30, 130, 512, 1864, 6340, 20472, 62770, 184748, 521272, 1428932
Offset: 0
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 2, 2, 2;
1, 3, 6, 10, 14, 16, 16;
1, 4, 12, 30, 68, 132, 252, 412, 614, 768, 768;
...
A246865
Total number of reduced decompositions for all permutations in S_n.
Original entry on oeis.org
1, 1, 2, 7, 66, 3061, 1095266, 3906746485, 165835140118904, 96867653699340061187, 883158060528372369857672080, 140546577721904223563711600192372503
Offset: 0
a(4) = 66 is summarized in a table of multiplicity versus length:
length = 0 1 2 3 4 5 6
multiplicity +---------------------+
1 | 1 3 4 2 . . . | = 10 1*10 = 10
2 | . . 1 4 1 . . | = 6 2*6 = 12
3 | . . . . 4 . . | = 4 3*4 = 12
5 | . . . . . 2 . | = 2 5*2 = 10
6 | . . . . . 1 . | = 1 6*1 = 6
16 | . . . . . . 1 | = 1 16*1 = 16
+---------------------+ -- --
1 3 5 6 5 3 1 = 24 a(4) = 66.
- _Michael Somos_, Sep 07 2014
- Bridget Eileen Tenner, Enumerating in Coxeter Groups (Survey), Advances in Mathematical Sciences, pp 75-82, Springer 2020.
- FindStat - Combinatorial Statistic Finder, The number of ways to write a permutation as a minimal length product of simple transpositions
- M. J. Hay, J. Schiff, N. J. Fisch, Maximal energy extraction under discrete diffusive exchange, arXiv preprint arXiv:1508.03499, 2015
- M. J. Hay, J. Schiff, N. J. Fisch, Available free energy under local phase space diffusion, arXiv preprint arXiv:1604.08573, 2016
- M. J. Hay, J. Schiff, N. J. Fisch, On extreme points of the diffusion polytope, Physica A 473 (2017) 225-236. doi:10.1016/j.physa.2017.01.038
- R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin., 5 (1984), 359-372.
A166860
Number of saturated chains in the poset of Dyck paths ordered by inclusion.
Original entry on oeis.org
1, 1, 3, 16, 191, 9586, 3621062, 13539455808, 596242050871827, 358279069210950329112, 3339667708892016201497713938, 540966002417189385158099747634890008, 1685909333511453301447626182908204645875878754, 110859993072493750180447848516163015805399916591746521402
Offset: 0
Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Oct 21 2009
For n=3, the Hasse diagram consists of 5 vertices corresponding to the 5 Dyck paths. With area as the rank function, we have one vertex of rank 0, two of rank 1, one of rank 2 and one of rank 3.
There are 16 saturated chains with 5 chains on one vertex, 5 chains on two vertices, 4 chains on three vertices and the 2 maximal chains on four vertices.
- R. P. Stanley, Enumerative Combinatorics 1, Cambridge University Press, New York, 1997.
-
# E.g., for n=3, using John Stembridge's Symmetric Functions package:
withSF();
AA:=add(s[op(la)],la=subPar([2,1]));tos(skew(AA,AA));
scalar(%, add(h1^r,r=0..4));
# second Maple program:
d:= proc(x, y, l) option remember;
`if`(x<=1, [[y, l[]]], [seq(d(x-1, i, [y, l[]])[], i=x-1..y)])
end:
a:= proc(n) option remember; local g;
g:= proc(l) option remember;
1 +add(`if`(l[i]>i and (i=1 or l[i-1]Alois P. Heinz, Jul 27 2011
-
d[x_, y_, l_List] := d[x, y, l] = If[x <= 1, {Join[{y}, l]}, Flatten[Table[d[x-1, i, Join[{y}, l]], {i, x-1, y}], 1]]; a[n_] := a[n] = Module[{g}, g[l_List] := g[l] = 1 + Sum[If[l[[i]] > i && (i == 1 || l[[i-1]] < l[[i]]), g[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, n-1}]; Sum[g[j], {j, d[n, n, {}]}]]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 06 2015, after Alois P. Heinz *)
A248330
The product of the first n Catalan numbers and the number of standard Young tableaux of shape(1,2,...,n).
Original entry on oeis.org
1, 1, 4, 160, 107520, 1722040320, 854352419880960, 16185399027773630054400, 13931397052191274338996977664000, 632089112919018408339999461491467091968000, 1721041721929360607907210006858724622834371563356160000
Offset: 0
A278289
Number of standard Young tableaux of skew shape (2n-1,2n-2,...,2,1)/(n-1,n-2,..,2,1).
Original entry on oeis.org
1, 1, 16, 101376, 1190156828672, 68978321274090930831360, 40824193474825703180733027309531955200, 440873872874088459550341319780612789503586208384381091840, 140992383930585613207663170866505518985873138480180692888967131590224605582721024
Offset: 0
For n = 3 there are a(2) = 16 standard tableaux of shape (3,2,1)/(1).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Corollary 7.16.3.
- Alejandro H. Morales, Table of n, a(n) for n = 0..22
- A. H. Morales, I. Pak and G. Panova, Asymptotics of the number of standard Young tableaux of skew shape, arXiv:1610.07561 [math.CO], 2016; European Journal of Combinatorics, Vol 70 (2018).
- A. H. Morales, I. Pak and G. Panova, Hook formulas for skew shapes II. Combinatorial proofs and enumerative applications, arXiv:1610.04744 [math.CO], 2016; SIAM Journal of Discrete Mathematics, Vol 31 (2017).
- A. H. Morales, I. Pak and M. Tassy, Asymptotics for the number of standard tableaux of skew shape and for weighted lozenge tilings, arXiv:1805.00992 [math.CO], 2018.
- A. H. Morales and D. G. Zhu, On the Okounkov--Olshanski formula for standard tableaux of skew shapes, arXiv:2007.05006 [math.CO], 2020.
- H. Naruse, Schubert calculus and hook formula, talk slides at 73rd Sém. Lothar. Combin., Strobl, Austria, 2014.
- I. Pak, Skew shape asymptotics, a case-based introduction, 2020.
- Jay Pantone, File with list of n, a(n) for n = 0..438 (warning: file size is 100MB)
Cf.
A005118; for even n the number of terms in Naruse hook length formula is given by
A181119 (Corollary 8.1 in arXiv:1610.04744).
-
a:=proc(k) local lam,mu;
lam:=[seq(2*k-i,i=1..2*k-1)];
mu:=[seq(k-i,i=1..k-1),seq(0,i=1..k)];
factorial(binomial(2*k,2)-binomial(k,2))*LinearAlgebra:-Determinant(Matrix(2*k-1, 2*k-1,(i,j)->`if`(lam[i]-mu[j]-i+j<0,0,1/factorial(lam[i]-mu[j]-i+j))));
end proc:
seq(a(n),n=0..5);
A291908
Number of standard Young tableaux of skew shape lambda/mu where lambda is the staircase (4*n-1,4*n-2,...,2,1) and mu is the square n^n.
Original entry on oeis.org
1, 16, 4362327818240, 19265181532031090042534736325278852710400, 830325323503973129435791248069702287019820905338483131168940909920954227594481411031040
Offset: 0
a(1)=16 since there are 16 standard Young tableaux of skew shape 321/1 since this is the same as the number of standard Young tableaux of straight shape 321 given by the hook-length formula: 16 = 6!/(3^2*5).
- E. A. DeWitt, Identities Relating Schur s-Functions and Q-Functions, Ph.D. thesis, University of Michigan, 2012, 73 pp.
- A. H. Morales, I. Pak, G. Panova, Hook formulas for skew shapes III. Multivariate and product formulas, arXiv:1707.00931 [math.CO], 2017.
-
b:=n->mul(factorial(i),i=1..n-1):
c:=n->mul(doublefactorial(2*i-1),i=1..n-1):
a:=n->factorial(binomial(4*n,2)-n^2)*b(n)^3*b(3*n)*c(n)*c(3*n)/(b(2*n)^3*c(2*n)^2*c(4*n)):
seq(a(n),n=0..9);
-
def b(n): return mul([factorial(i) for i in range(1,n)])
def d(n): return factorial(n+1)/(2^((n+1)/2)*factorial((n+1)/2))
def c(n): return mul([d(2*i-1) for i in range(1,n)])
def a(n):
return factorial(binomial(4*n,2)-n^2)*b(n)^3*b(3*n)*c(n)*c(3*n)/(b(2*n)^3*c(2*n)^2*c(4*n))
[a(n) for n in range(10)]
A092238
Number of ways to write the permutation n,n-1,...,1 of 1,2,...,n as a product of n(n-1)/2 transpositions, where each transposition of 1,2,...,n occurs exactly once.
Original entry on oeis.org
1, 1, 1, 2, 64, 59712, 3580519776
Offset: 0
a(3)=2 because 321 = (1,2)(1,3)(2,3) = (2,3)(1,3)(1,2).
Previous
Showing 11-18 of 18 results.
Comments