cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A193629 Triangle T(n,k), n>=0, 0<=k<=C(n,2), read by rows: T(n,k) = number of k-length chains in the poset of Dyck paths of semilength n ordered by inclusion.

Original entry on oeis.org

1, 1, 2, 1, 5, 9, 7, 2, 14, 70, 176, 249, 202, 88, 16, 42, 552, 3573, 13609, 33260, 54430, 60517, 45248, 21824, 6144, 768, 132, 4587, 72490, 653521, 3785264, 15104787, 43358146, 91942710, 146186256, 175196202, 157630704, 104922224, 50152960, 16290560, 3221504
Offset: 0

Views

Author

Alois P. Heinz, Aug 01 2011

Keywords

Examples

			Poset of Dyck paths of semilength n=3:
.
.      A       A:/\      B:
.      |        /  \      /\/\
.      B       /    \    /    \
.     / \
.    C   D     C:        D:        E:
.     \ /         /\      /\
.      E       /\/  \    /  \/\    /\/\/\
.
Chains of length k=0: A, B, C, D, E (5); k=1: A-B, A-C, A-D, A-E, B-C, B-D, B-E, C-E, D-E (9); k=2: A-B-C, A-B-D, A-B-E, A-C-E, A-D-E, B-C-E, B-D-E (7), k=3: A-B-C-E, A-B-D-E (2) => [5, 9, 7, 2].
Triangle begins:
:   1;
:   1;
:   2,    1;
:   5,    9,     7,      2;
:  14,   70,   176,    249,     202,       88,       16;
:  42,  552,  3573,  13609,   33260,    54430,    60517,    45248, ...
: 132, 4587, 72490, 653521, 3785264, 15104787, 43358146, 91942710, ...
		

Crossrefs

Row sums give: A143672-A057427. Column k=0 gives: A000108. Last elements of rows give: A005118. Row lengths give: A000124(n-1). Cf. A193536.

Programs

  • Maple
    d:= proc(x, y, l) option remember;
          `if`(x<=1, [[l[], y]], [seq(d(x-1, i, [l[], y])[], i=x-1..y)])
        end:
    le:= proc(l1, l2) local i;
           for i to nops(l1) do if l1[i]>l2[i] then return false fi od; true
         end:
    T:= proc(n) option remember; local h, l, m, g, r;
          l:= d(n, n, []); m:= nops(l);
          g:= proc(t) option remember; local r, d;
                r:= [1];
                for d to t-1 do if le(l[d], l[t]) then
                  r:= zip((x, y)->x+y, r, [0, g(d)[]], 0)
                fi od; r
              end;
          r:= [];
          for h to m do
            r:= zip((x, y)->x+y, r, g(h), 0)
          od; r[]
        end:
    seq(T(n), n=0..7);

A289778 Number T(n,k) of reduced decompositions for all permutations of [n] with exactly k inversions; triangle T(n,k), n>=0, 0<=k<=n*(n-1)/2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 6, 10, 14, 16, 16, 1, 4, 12, 30, 68, 132, 252, 412, 614, 768, 768, 1, 5, 20, 68, 210, 588, 1540, 3778, 8768, 19402, 40284, 78276, 137236, 219362, 292864, 292864, 1, 6, 30, 130, 512, 1864, 6340, 20472, 62770, 184748, 521272, 1428932
Offset: 0

Views

Author

Alois P. Heinz, Jul 12 2017

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1, 1;
  1, 2,  2,  2;
  1, 3,  6, 10, 14,  16,  16;
  1, 4, 12, 30, 68, 132, 252, 412, 614, 768, 768;
  ...
		

Crossrefs

Row sums give A246865.

Formula

T(n,n*(n-1)/2) = A005118(n).

A246865 Total number of reduced decompositions for all permutations in S_n.

Original entry on oeis.org

1, 1, 2, 7, 66, 3061, 1095266, 3906746485, 165835140118904, 96867653699340061187, 883158060528372369857672080, 140546577721904223563711600192372503
Offset: 0

Views

Author

Sara Billey, Sep 05 2014

Keywords

Comments

A decomposition of a permutation is a product of adjacent transpositions. A reduced decomposition is one of minimal length which is also the number of inversions of the permutation and there may be more than one reduced decomposition. The largest number (multiplicity) of reduced decompositions of a permutation in S_n is A005118(n) for the permutation which reverses the order of all elements and all of its reduced decompositions have length n(n-1)/2 which is the maximum number of inversions. - Michael Somos, Sep 07 2014

Examples

			a(4) = 66 is summarized in a table of multiplicity versus length:
length     =   0  1  2  3  4  5  6
multiplicity +---------------------+
       1     | 1  3  4  2  .  .  . | = 10   1*10 = 10
       2     | .  .  1  4  1  .  . | =  6   2*6  = 12
       3     | .  .  .  .  4  .  . | =  4   3*4  = 12
       5     | .  .  .  .  .  2  . | =  2   5*2  = 10
       6     | .  .  .  .  .  1  . | =  1   6*1  =  6
      16     | .  .  .  .  .  .  1 | =  1  16*1  = 16
             +---------------------+   --          --
               1  3  5  6  5  3  1   = 24   a(4) = 66.
- _Michael Somos_, Sep 07 2014
		

References

  • Bridget Eileen Tenner, Enumerating in Coxeter Groups (Survey), Advances in Mathematical Sciences, pp 75-82, Springer 2020.

Crossrefs

Row sums of A289778.

Extensions

a(0)=1 prepended and a(7)-a(11) from Alois P. Heinz, Jul 10 2017

A166860 Number of saturated chains in the poset of Dyck paths ordered by inclusion.

Original entry on oeis.org

1, 1, 3, 16, 191, 9586, 3621062, 13539455808, 596242050871827, 358279069210950329112, 3339667708892016201497713938, 540966002417189385158099747634890008, 1685909333511453301447626182908204645875878754, 110859993072493750180447848516163015805399916591746521402
Offset: 0

Views

Author

Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Oct 21 2009

Keywords

Comments

Breakdown by length of chain:
n: chains
0: 1;
1: 1;
2: 2, 1;
3: 5, 5, 4, 2;
4: 14, 21, 30, 38, 40, 32, 16;
5: 42, 84, 168, 322, 578, 952, 1408, 1808, 1920, 1536, 768;
Note that for each n, there are C_n chains of length 0 (A000108) and the number of maximal chains is A005118.

Examples

			For n=3, the Hasse diagram consists of 5 vertices corresponding to the 5 Dyck paths. With area as the rank function, we have one vertex of rank 0, two of rank 1, one of rank 2 and one of rank 3.
There are 16 saturated chains with 5 chains on one vertex, 5 chains on two vertices, 4 chains on three vertices and the 2 maximal chains on four vertices.
		

References

  • R. P. Stanley, Enumerative Combinatorics 1, Cambridge University Press, New York, 1997.

Crossrefs

Programs

  • Maple
    # E.g., for n=3, using John Stembridge's Symmetric Functions package:
    withSF();
    AA:=add(s[op(la)],la=subPar([2,1]));tos(skew(AA,AA));
    scalar(%, add(h1^r,r=0..4));
    # second Maple program:
    d:= proc(x, y, l) option remember;
          `if`(x<=1, [[y, l[]]], [seq(d(x-1, i, [y, l[]])[], i=x-1..y)])
        end:
    a:= proc(n) option remember; local g;
          g:= proc(l) option remember;
                1 +add(`if`(l[i]>i and (i=1 or l[i-1]Alois P. Heinz, Jul 27 2011
  • Mathematica
    d[x_, y_, l_List] := d[x, y, l] = If[x <= 1, {Join[{y}, l]}, Flatten[Table[d[x-1, i, Join[{y}, l]], {i, x-1, y}], 1]]; a[n_] := a[n] = Module[{g}, g[l_List] := g[l] = 1 + Sum[If[l[[i]] > i && (i == 1 || l[[i-1]] < l[[i]]), g[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, n-1}]; Sum[g[j], {j, d[n, n, {}]}]]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 06 2015, after Alois P. Heinz *)

Formula

1) For D_i, D_j in D_n, the number of saturated chains = Sum_{D_i<=D_j} (number of standard Young tableaux for D_j\D_i partition).
2) Define zeta(x,y)=1 if x=y or if y immediately covers x in the poset and delta is the identity function. Then the number of saturated chains = sum of entries in the (2*delta - zeta)^(-1) matrix.

Extensions

a(9)-a(13) from Alois P. Heinz, Jul 27 2011

A248330 The product of the first n Catalan numbers and the number of standard Young tableaux of shape(1,2,...,n).

Original entry on oeis.org

1, 1, 4, 160, 107520, 1722040320, 854352419880960, 16185399027773630054400, 13931397052191274338996977664000, 632089112919018408339999461491467091968000, 1721041721929360607907210006858724622834371563356160000
Offset: 0

Views

Author

Alejandro H. Morales, Oct 04 2014

Keywords

Comments

The volume of a certain polytope (the Tesler polytope) whose lattice points are Tesler matrices (A008608), and with (n+1)! integral vertices (permutation Tesler matrices).
This is also the iterated constant term of the rational function (x1+x2+...+xn+x(n+1))^binomial(n+1,2)*product_{1<=i

Crossrefs

Programs

  • Maple
    A248330 := proc(n) local i; mul(binomial(2*k, k)/(1+k), k=0..n)*binomial(n+1, 2)!/ mul( (2*i+1)^(n-i), i=0..n-1 ); end;

Formula

a(n) = A005118(n+1) * A003046(n).
a(n) = A005118(n+1) * Product_{k=0..n} A000108(k).

A278289 Number of standard Young tableaux of skew shape (2n-1,2n-2,...,2,1)/(n-1,n-2,..,2,1).

Original entry on oeis.org

1, 1, 16, 101376, 1190156828672, 68978321274090930831360, 40824193474825703180733027309531955200, 440873872874088459550341319780612789503586208384381091840, 140992383930585613207663170866505518985873138480180692888967131590224605582721024
Offset: 0

Author

Alejandro H. Morales, Nov 16 2016

Keywords

Examples

			For n = 3 there are a(2) = 16 standard tableaux of shape (3,2,1)/(1).
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Corollary 7.16.3.

Crossrefs

Cf. A005118; for even n the number of terms in Naruse hook length formula is given by A181119 (Corollary 8.1 in arXiv:1610.04744).

Programs

  • Maple
    a:=proc(k) local lam,mu;
    lam:=[seq(2*k-i,i=1..2*k-1)];
    mu:=[seq(k-i,i=1..k-1),seq(0,i=1..k)];
    factorial(binomial(2*k,2)-binomial(k,2))*LinearAlgebra:-Determinant(Matrix(2*k-1, 2*k-1,(i,j)->`if`(lam[i]-mu[j]-i+j<0,0,1/factorial(lam[i]-mu[j]-i+j))));
    end proc:
    seq(a(n),n=0..5);

Formula

a(n) = ((3*n^2-n)/2)!*det(1/(lambda[i]-mu[j]-i+j)!), where lambda = (2*n-1,2*n-2,...,1) and mu = (n-1,n-2,...,1,0...,0).
There is a constant c such that log(a(k)) = n*log(n)/2 + c*n + o(n) where n = k*(3*k-1)/2 goes to infinity and -0.2368 <= c <= -0.1648. [updated by Alejandro H. Morales, Aug 29 2020]

A291908 Number of standard Young tableaux of skew shape lambda/mu where lambda is the staircase (4*n-1,4*n-2,...,2,1) and mu is the square n^n.

Original entry on oeis.org

1, 16, 4362327818240, 19265181532031090042534736325278852710400, 830325323503973129435791248069702287019820905338483131168940909920954227594481411031040
Offset: 0

Author

Alejandro H. Morales, Sep 05 2017

Keywords

Comments

The number of standard Young tableaux of a fixed skew shape has a determinantal formula, the Jacobi-Trudi formula. It is rare when a family of skew shapes has a product formula for the number of standard Young tableaux. This product formula has independently been proved using P-Schur functions (by DeWitt) and using the Naruse hook-length formula for skew shapes (by Morales, Pak and Panova).

Examples

			a(1)=16 since there are 16 standard Young tableaux of skew shape 321/1 since this is the same as the number of standard Young tableaux of straight shape 321 given by the hook-length formula: 16 = 6!/(3^2*5).
		

Programs

  • Maple
    b:=n->mul(factorial(i),i=1..n-1):
    c:=n->mul(doublefactorial(2*i-1),i=1..n-1):
    a:=n->factorial(binomial(4*n,2)-n^2)*b(n)^3*b(3*n)*c(n)*c(3*n)/(b(2*n)^3*c(2*n)^2*c(4*n)):
    seq(a(n),n=0..9);
  • Sage
    def b(n): return mul([factorial(i) for i in range(1,n)])
    def d(n): return factorial(n+1)/(2^((n+1)/2)*factorial((n+1)/2))
    def c(n): return mul([d(2*i-1) for i in range(1,n)])
    def a(n):
        return factorial(binomial(4*n,2)-n^2)*b(n)^3*b(3*n)*c(n)*c(3*n)/(b(2*n)^3*c(2*n)^2*c(4*n))
    [a(n) for n in range(10)]

Formula

a(n) = (binomial(4*n,2)-n^2)!*b(n)^3*b(3*n)*c(n)*c(3*n)/(b(2*n)^3*c(2*n)^2*c(4*n)) where b(n) = 1!*2!*...*(n-1)! is the superfactorial A000178(n-1), and c(n) = 1!!*3!!*...*(2*n-3)!! is super doublefactorial A057863(n-1).
a(n) ~ sqrt(Pi) * 3^(9*n^2 - 3*n/2 - 1/24) * 7^(7*n^2 - 2*n + 1/2) * exp(7*n^2/2 - 2*n + 23/56) * n^(7*n^2 - 2*n + 7/8) / (A^(3/2) * 2^(33*n^2 - 6*n - 7/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2021

A092238 Number of ways to write the permutation n,n-1,...,1 of 1,2,...,n as a product of n(n-1)/2 transpositions, where each transposition of 1,2,...,n occurs exactly once.

Original entry on oeis.org

1, 1, 1, 2, 64, 59712, 3580519776
Offset: 0

Author

Richard Stanley, Feb 19 2004

Keywords

Comments

If we impose the additional condition on the product t_1 t_2 ... of transpositions that the number of inversions increases by one each time we multiply by a t_i, then the number of ways is given by A005118.

Examples

			a(3)=2 because 321 = (1,2)(1,3)(2,3) = (2,3)(1,3)(1,2).
		

Crossrefs

Cf. A005118.

Extensions

a(0)=1 prepended and a(6) added by Alois P. Heinz, Jul 12 2017
Previous Showing 11-18 of 18 results.