A318590
Number of connected balanced simple signed graphs on n unlabeled nodes.
Original entry on oeis.org
1, 1, 2, 5, 28, 177, 1982, 33997, 1020516, 54570672, 5347070228, 967135763525, 324200029119318, 202046821340636691, 234878262433630160622, 511060736355598412146405, 2088401066728281847415734793, 16079824271822965645002329491423, 233994776259866281916838227225733732
Offset: 0
A034892
Number of balanced signed graphs on n unlabeled nodes.
Original entry on oeis.org
1, 1, 3, 8, 39, 226, 2283, 36789, 1062679, 55717077, 5405078682, 972656526492, 325183692812200, 202373967993972497, 235081289816026793049, 511296223391186047847309, 2088912833728676472658628201, 16081914207958884651686215477871, 234010862353438997655954463710225233
Offset: 0
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
a(0)=1 prepended and terms a(13) and beyond from
Andrew Howroyd, Sep 25 2018
A079571
Number of unlabeled, connected graphs on n vertices whose complements are bipartite.
Original entry on oeis.org
1, 1, 1, 2, 5, 11, 32, 85, 299, 1115, 5474, 32298, 251129, 2527706, 33985846, 611846933, 14864650916, 488222721984, 21712049275189, 1308300679611460, 106897965189674281, 11852113048215107812, 1784730721403509209204, 365323537513403184463262
Offset: 0
-
A005142 = Import["https://oeis.org/A005142/b005142.txt", "Table"][[All, 2]];
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
b = etr[A005142[[# + 1]]&];
a[n_] := b[n] - Floor[n/2];
a /@ Range[0, 50] (* Jean-François Alcover, Sep 17 2019 *)
Corrected and extended using formula by
Falk Hüffner, Jan 22 2016
a(0)=1 prepended and terms a(21) and beyond from
Andrew Howroyd, Sep 05 2018
A369227
Triangle read by rows: T(n,k) is the number of uniquely colorable simple graphs on n nodes with chromatic number k = 1..n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 3, 1, 1, 1, 17, 12, 3, 1, 1, 1, 44, 72, 12, 3, 1, 1, 1, 182, 856, 127, 12, 3, 1, 1, 1, 730, 17018, 3426, 127, 12, 3, 1, 1, 1, 4032, 531568, 221188, 4938, 127, 12, 3, 1, 1, 1, 25598
Offset: 1
Triangle read by rows:
1
1, 1
1, 1, 1
1, 3, 1, 1
1, 5, 3, 1, 1
1, 17, 12, 3, 1, 1
1, 44, 72, 12, 3, 1, 1
1, 182, 856, 127, 12, 3, 1, 1
1, 730, 17018, 3426, 127, 12, 3, 1, 1
1, 4032, 531568, 221188, 4938, 127, 12, 3, 1, 1
1, 25598, ...
A079565
Number of unlabeled and connected graphs on n vertices which are either bipartite or co-bipartite.
Original entry on oeis.org
1, 1, 2, 6, 16, 49, 129, 481, 1845, 9506, 57896, 463909, 4769436, 65179170, 1187099045, 29082860878, 960963147303, 42920936851975, 2594399793419459, 212465886865393053, 23596018831885668391, 3557502387712889568013, 728850489548729072323085
Offset: 1
Let G be a graph with 5 vertices, 4 of which form a path and the 5th adjacent only to the two vertices in the middle of the path. Then G is not bipartite nor cobipartite because there is a triangle in both G and its complement.
-
A005142 = Import["https://oeis.org/A005142/b005142.txt", "Table"][[All, 2]];
A033995 = Import["https://oeis.org/A033995/b033995.txt", "Table"][[All, 2]];
a[n_] := If[n<5, {1, 1, 2, 6}[[n]], A005142[[n+1]] + A033995[[n+1]] - Floor[n/2]];
a /@ Range[1, 50] (* Jean-François Alcover, Sep 17 2019 *)
A165452
Number of connected graphs of odd girth at least 7 with n vertices.
Original entry on oeis.org
1, 1, 1, 3, 5, 17, 45, 184, 748, 4143, 26532, 221032, 2326853, 32202266, 589436301, 14459238676, 477812658943
Offset: 1
Friedrich Regen (friedrich.regen(AT)tu-ilmenau.de), Sep 20 2009
- F. Hüffner, tinygraph, software for generating integer sequences based on graph properties, version ece94ef.
Inverse EULER transform of
A345247.
a(15) and a(16) added using tinygraph by
Falk Hüffner, Jan 15 2016
A342212
Largest number of maximal bipartite node-induced subgraphs of an n-node graph.
Original entry on oeis.org
1, 1, 3, 6, 10, 15, 21, 38, 64
Offset: 1
All optimal graphs (i.e., graphs having n nodes and a(n) maximal bipartite subgraphs) for 1 <= n <= 9 are listed below. Here, FCB(n_1, ..., n_k) denotes the full cyclic braid graph with cluster sizes n_1, ..., n_k, as defined by Morrison and Scott (2017), i.e., the graph obtained by arranging complete graphs of orders n_1, ..., n_k (in that order) in a cycle, and joining all pairs of nodes in neighboring parts with edges. (The graph in the paper by Byskov, Madsen, and Skjernaa, which shows that a(10) >= 105, is FCB(2, 2, 2, 2, 2).)
n = 1: the 1-node graph;
n = 2: the complete graph and the empty graph;
3 <= n <= 6: the complete graph;
n = 7: FCB(1, 1, 2, 1, 2) (the Moser spindle) and the complete graph;
n = 8: FCB(1, 2, 1, 2, 2) and the 4-antiprism graph;
n = 9: FCB(1, 2, 2, 1, 3).
For a list of related sequences, see cross-references in
A342211.
A128953
Number of 3-connected bipartite graphs on n unlabeled nodes.
Original entry on oeis.org
1, 1, 6, 12, 85, 471, 5373, 75145, 1543382, 41554738
Offset: 6
a(6) = 1 because the complete bipartite graph K_{3,3} is the only 3-connected bipartite graph on 6 vertices.
A243270
Number of unlabeled simple graphs with n nodes that are Hamiltonian and bipartite.
Original entry on oeis.org
1, 0, 0, 1, 0, 4, 0, 24, 0, 473, 0, 30512, 0, 6374556
Offset: 1
a(11)-a(14) added using tinygraph by
Falk Hüffner, Aug 13 2017
A243320
Number of simple connected graphs with n nodes that are bipartite and Eulerian.
Original entry on oeis.org
1, 0, 0, 1, 0, 2, 1, 6, 7, 29, 64, 287, 1148, 7267, 55997, 620561
Offset: 1
a(11)-a(16) added using tinygraph by
Falk Hüffner, Jan 15 2016
Comments