cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A171065 G.f. -x*(x-1)*(1+x)/(1-x-8*x^2-x^3+x^4).

Original entry on oeis.org

0, 1, 1, 8, 17, 81, 224, 881, 2737, 9928, 32481, 113761, 380800, 1313441, 4441121, 15215688, 51677297, 176530481, 600723424, 2049428881, 6980069457, 23799693448, 81088954561, 276417142721, 941948403200, 3210574806081
Offset: 0

Views

Author

R. J. Mathar, at the request of R. K. Guy, Sep 03 2010

Keywords

Comments

The member k=8 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).
This is the case P1 = 1, P2 = -10, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 31 2014

Crossrefs

Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6). A100047.

Programs

  • Magma
    I:=[0, 1, 1, 8]; [n le 4 select I[n] else Self(n-1) + 8*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 8*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
    LinearRecurrence[{1,8,1,-1},{0,1,1,8},30] (* Harvey P. Dale, Dec 27 2017 *)

Formula

a(n)= +a(n-1) +8*a(n-2) +a(n-3) -a(n-4).
From Peter Bala, Mar 31 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(41))/4 and beta = (1 - sqrt(41))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 5/2; 1, 1/2].
a(n) = U(n-1,i*(1 + sqrt(2))/2)*U(n-1,i*(1 + sqrt(2))/2), where U(n,x) denotes the Chebyshev polynomial of the second kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)

A171066 G.f. -x*(x-1)*(1+x)/(1-x-9*x^2-x^3+x^4).

Original entry on oeis.org

0, 1, 1, 9, 19, 100, 279, 1189, 3781, 14661, 49600, 184141, 641421, 2333629, 8240959, 29700900, 105561739, 378777169, 1350292761, 4835148121, 17260998400, 61748847081, 220582688041, 788748162049, 2818480203099, 10076047502500
Offset: 0

Views

Author

R. J. Mathar, at the request of R. K. Guy, Sep 03 2010

Keywords

Comments

The member k=9 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).

Crossrefs

Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6).

Programs

  • Magma
    I:=[0, 1, 1, 9]; [n le 4 select I[n] else Self(n-1) + 9*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 9*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)

Formula

a(n)= +a(n-1) +9*a(n-2) +a(n-3) -a(n-4)

A171067 G.f. -x*(x-1)*(1+x)/((x^2+3*x+1)*(x^2-4*x+1)).

Original entry on oeis.org

0, 1, 1, 10, 21, 121, 340, 1561, 5061, 20890, 72721, 285121, 1028160, 3931201, 14425201, 54480250, 201635301, 756931801, 2813339860, 10529812921, 39218508021, 146573045290, 546474598561, 2040893746561, 7612994269440
Offset: 0

Views

Author

R. J. Mathar, at the request of R. K. Guy, Sep 03 2010

Keywords

Comments

The member k=10 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).

Crossrefs

Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6).

Programs

  • Magma
    I:=[0, 1, 1, 10]; [n le 4 select I[n] else Self(n-1) + 10*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[-x*(x - 1)*(1 + x)/((x^2 + 3*x + 1)*(x^2 - 4*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
    LinearRecurrence[{1,10,1,-1},{0,1,1,10},30] (* Harvey P. Dale, Dec 24 2017 *)

Formula

a(n)= +a(n-1) +10*a(n-2) +a(n-3) -a(n-4).
a(n)= -(-1)^n*A005248(n)/7 + 2*A001075(n)/7.

A171068 G.f. -x*(x-1)*(1+x)/(1-x-11*x^2-x^3+x^4).

Original entry on oeis.org

0, 1, 1, 11, 23, 144, 407, 2003, 6601, 28897, 103104, 425569, 1582009, 6337475, 24062039, 94930704, 364368599, 1426330907, 5505254161, 21464332033, 83084090112, 323270665729, 1253154734833, 4870751815931, 18895640474711
Offset: 0

Views

Author

R. J. Mathar, at the request of R. K. Guy, Sep 03 2010

Keywords

Comments

The member k=11 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).

Crossrefs

Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6).

Programs

  • Magma
    I:=[0, 1, 1, 11]; [n le 4 select I[n] else Self(n-1) + 11*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 11*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)

Formula

a(n)= +a(n-1) +11*a(n-2) +a(n-3) -a(n-4).

A171069 G.f. -x*(x-1)*(1+x)/(1-x-12*x^2-x^3+x^4).

Original entry on oeis.org

0, 1, 1, 12, 25, 169, 480, 2521, 8425, 38988, 142129, 615889, 2352000, 9845809, 38543569, 158429388, 628446025, 2558296441, 10219534560, 41389108489, 165953373625, 670283913612, 2692893971041, 10860865199521, 43679923392000
Offset: 0

Views

Author

R. J. Mathar, at the request of R. K. Guy, Sep 03 2010

Keywords

Comments

The member k=12 of a family of sequences starting 0,1,1,k with recurrence a(n) = a(n-1)+k*a(n-2)+a(n-3)-a(n-4).

Crossrefs

Cf. A116201 (k=1), A105309 (k=2), A152090 (k=3), A007598 (k=4), A005178 (k=5), A003757 (k=6).

Programs

  • Magma
    I:=[0, 1, 1, 12]; [n le 4 select I[n] else Self(n-1) + 12*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 12*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
    LinearRecurrence[{1,12,1,-1},{0,1,1,12},30] (* Harvey P. Dale, Nov 04 2024 *)

Formula

a(n)= +a(n-1) +12*a(n-2) +a(n-3) -a(n-4).

A232621 The number of vertically fault-free domino tilings of the 5 X (2n) board.

Original entry on oeis.org

1, 8, 31, 175, 1015, 5911, 34447, 200767, 1170151, 6820135, 39750655, 231683791, 1350352087, 7870428727, 45872220271, 267362892895, 1558305137095, 9082467929671, 52936502440927, 308536546715887, 1798282777854391, 10481160120410455, 61088677944608335
Offset: 0

Views

Author

R. J. Mathar, Nov 27 2013

Keywords

Comments

A003775 counts the tilings of the 5 X (2n) board, and this sequence here counts only those that cannot be broken into tilings of two or more smaller 5 X (2n') boards with edge lengths n' < n by cutting "vertically" through the tiling parallel to the "short" side of length 5.
Technically speaking this is the inverse INVERT transform of A003775 (see the comment in A005178).

Crossrefs

Programs

  • PARI
    Vec((-18*x^2+13*x^3-x^4+x+1)/((1-x)*(1-6*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 05 2016

Formula

G.f.: (1 + x - 18*x^2 + 13*x^3 - x^4)/((1-x)*(1 - 6*x + x^2)).
a(n) = 1 + 6*A001653(n) for n>1. - Bruno Berselli, Nov 27 2013
a(n) = 6*a(n-1) - a(n-2) - 4, n>=4. - R. J. Mathar, Nov 07 2015
a(n) = 1 + (3/2)*(3-2*sqrt(2))^n*(2+sqrt(2)) + (3-3/sqrt(2))*(3+2*sqrt(2))^n for n>1. - Colin Barker, Mar 05 2016
Previous Showing 21-26 of 26 results.