cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 246 results. Next

A027619 Numbers k such that Hofstadter Q-sequence Q(k) (A005185) satisfies Q(k) = k/2.

Original entry on oeis.org

2, 50, 56, 128, 156, 166, 208, 238, 272, 308, 336, 392, 474, 476, 512, 618, 658, 666, 710, 734, 836, 868, 1016, 1064, 1376, 1386, 1424, 1432, 1832, 2216, 2280, 2334, 2606, 2638, 2676, 2700, 2740, 2782, 2786, 2912, 2922, 2948, 2954, 3758
Offset: 1

Views

Author

G. R. Bower (fsgrb(AT)aurora.alaska.edu)

Keywords

Programs

  • Mathematica
    q[n_] := q[n] = If[n <= 2, 1, q[n - q[n-1]] + q[n - q[n-2]]];
    Reap[For[n = 1, n <= 4000, n++, If[q[n] == n/2, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 02 2019 *)

Formula

Conjecture: a(n)/n^2 is bounded. - Benoit Cloitre, Oct 26 2002

A072231 a(n) = floor(n^2/A005185(n-1)), where A005185 is Hofstadter's Q-sequence.

Original entry on oeis.org

1, 4, 4, 5, 8, 9, 9, 12, 13, 16, 20, 18, 21, 24, 22, 28, 28, 29, 32, 33, 36, 40, 44, 36, 44, 48, 45, 49, 52, 56, 48, 60, 64, 57, 58, 68, 68, 65, 72, 72, 73, 76, 77, 80, 84, 88, 92, 72, 100, 100, 86, 96, 108, 97, 100, 112, 101, 112, 108, 112, 116, 120, 99, 124, 136, 114, 128
Offset: 1

Views

Author

Roger L. Bagula, Jul 05 2002

Keywords

Crossrefs

Cf. A005185.

Extensions

Corrected and extended by Robert G. Wilson v, Jun 05 2004
Edited by N. J. A. Sloane, Jun 07 2004

A086267 a(n) = 3 + (H(n) mod 6) + floor(r) where H()=A005185() and r = (H(n) - 2*H(n+1) + H(n+2) - 4) / H(n).

Original entry on oeis.org

1, 0, 2, 5, 4, 5, 7, 7, 2, 2, 2, 4, 4, 4, 6, 5, 6, 7, 7, 2, 2, 3, 2, 6, 4, 4, 6, 6, 7, 6, 4, 7, 7, 4, 5, 3, 4, 6, 5, 6, 7, 7, 2, 2, 2, 3, 2, 5, 3, 3, 2, 7, 4, 2, 3, 6, 5, 2, 4, 4, 5, 4, 7, 6, 3, 4, 8, 5, 5, 7, 3, 4, 6, 5, 7, 5, 2, 6, 7, 3, 4, 3, 3, 6, 4, 5, 7, 7, 6, 2, 2, 2, 2, 3, 2, 7, 7, 6, 2, 5, 2, 2, 3, 4, 3
Offset: 1

Views

Author

Roger L. Bagula, Aug 28 2003

Keywords

Programs

  • Maple
    A005185 := proc(n)
            option remember;
            if n<=2 then
                    1
            elif n > procname(n-1) and n > procname(n-2) then
                    procname(n-procname(n-1))+procname(n-procname(n-2));
            end if;
    end proc:
    A086267 := proc(n)
            local H ;
            H := A005185(n) ;
            H-2*A005185(n+1)+A005185(n+2)-4;
            %/H ;
            3+ floor(%)+ (H mod 6) ;
    end proc:
    seq(A086267(n),n=1..50) ; # R. J. Mathar, Oct 10 2011
  • Mathematica
    Hofstadter[n_Integer?Positive] := Hofstadter[n] = Hofstadter[n - Hofstadter[n-1]] + Hofstadter[n - Hofstadter[n-2]] Hofstadter[1] = Hofstadter[2] = 1 Digits=502 a=Table[Hofstadter[n], {n, 1, Digits}]; b=Table[Floor[(a[[n]]-2*a[[n+1]]+a[[n+2]]-4)/a[[n]]]+Mod[a[[n]], 6]+3, {n, 1, Digits-2}] ListPlot[b]

A087722 Strictly decreasing domain set of A005185.

Original entry on oeis.org

9, 14, 17, 19, 21, 24, 26, 28, 30, 31, 33, 35, 37, 39, 40, 41, 43, 44, 46, 48, 50, 52, 53, 55, 57, 58, 61, 62, 63, 64, 65, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 100, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 116, 118, 119
Offset: 1

Views

Author

Roger L. Bagula, Sep 29 2003

Keywords

Crossrefs

Cf. A005185.

Programs

  • Mathematica
    digits=750;
    Hofstadter[n_Integer?Positive] := Hofstadter[n] = Hofstadter[n - Hofstadter[n-1]] + Hofstadter[n - Hofstadter[n-2]];
    Hofstadter[1] = Hofstadter[2] = 1;
    a1=Table[Hofstadter[n], {n, 1, digits}];
    f[x_, y_] := Abs[x-y]/; x-y<0;
    f[x_, y_] := 0/; x-y>=0;
    b=Table[If[f[a1[[n]], a1[[n-1]]]>0, a1[[n]], 0], {n, 2, digits}];
    c=Delete[Union[b], 1]

A116590 a(0)=1; a(n)=b(n+2)+b(n), where b(n)=A005185(n) is the Hofstadter Q-sequence: b(1)=b(2)=1; b(n)=b(n-b(n-1))+b(n-b(n-2)) for n > 2.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 9, 11, 11, 12, 14, 14, 16, 18, 17, 20, 20, 21, 23, 23, 24, 24, 28, 26, 30, 30, 30, 32, 32, 36, 33, 37, 37, 38, 39, 41, 41, 41, 44, 44, 45, 47, 47, 48, 48, 48, 56, 48, 57, 54, 53, 56, 58, 56, 58, 62, 58, 64, 62, 64, 64, 72, 65, 71, 71, 66, 71, 74, 73, 76, 78, 77
Offset: 0

Views

Author

Roger L. Bagula, Mar 27 2006

Keywords

Comments

A similar definition applied to the Fibonacci sequence (A000045) leads to the Lucas sequence (A000032).

Crossrefs

Programs

  • Haskell
    a116590 n = a116590_list !! n
    a116590_list = 1 : zipWith (+) a005185_list (drop 2 a005185_list)
    -- Reinhard Zumkeller, Apr 25 2012
  • Maple
    b:=proc(n) option remember; if n<=2 then 1 else b(n-b(n-1))+b(n-b(n-2)): fi: end: a[0]:=1: for n from 1 to 71 do a[n]:=b(n)+b(n+2) od: seq(a[n],n=0..71);
  • Mathematica
    F[0] = 0; F[1] = 1; F[2] = 1; F[n_] := F[n] = F[n - F[n - 1]] + F[n - F[n - 2]] L[0] = 1; L[n_] := L[n] = F[n - 1] + F[n + 1]
    Table[L[n], {n, 1, 200}]

Formula

a(n) = A005185(n+2) + A005185(n) for n>=1.

Extensions

Edited by N. J. A. Sloane, Apr 15 2006

A121459 Let f(n) = A004001(n)^2 - A005185(n)^2. Then a(n) = f(abs(f(n-1))) + f(abs(n - f(n-1))).

Original entry on oeis.org

0, -3, -14, -18, -7, -9, -47, -51, 0, -15, -15, -48, -17, -36, 57, -151, 0, -63, 0, -11, 0, 25, 26, 368, 29, -5, -96, -33, 0, -144, 2275, -466, -180, 433, 472, 0, -43, 316, 0, 0, 47, -302, 49, 152, 1122, 945, 1273, 10170, 589, 1310, 121, 54, 3117, 0, 177, 2141, -1280, -5, 310, 0
Offset: 1

Views

Author

Roger L. Bagula, Sep 06 2006

Keywords

Crossrefs

Programs

  • Mathematica
    HConway[n_]:= HConway[n]= If[n<3, 1, HConway[HConway[n-1]] + HConway[n-HConway[n -1]]];
    Hofstadter[n_]:= Hofstadter[n]= If[n<3, 1, Hofstadter[n -Hofstadter[n-1]] + Hofstadter[n -Hofstadter[n-2]]];
    f[n_]:= f[n]= HConway[n]^2 - Hofstadter[n]^2;
    Table[f[Abs[f[n-1]]] + f[Abs[n -f[n-1]]], {n,60}] (* corrected by G. C. Greubel, Feb 12 2020 *)

Extensions

Edited by N. J. A. Sloane, Oct 01 2006
Terms a(31) and beyond corrected by G. C. Greubel, Feb 12 2020

A176048 Triangle t(n,m) = A005185(m+1)+A005185(n-m+1)-A005185(n+1), read by rows 0<=m<=n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, -1, 0, 1, 0, 1, 1, 0, 1, 0, -1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Apr 07 2010

Keywords

Examples

			  1;
 1, 1;
 1, 0, 1;
 1, 0, 0, 1;
 1, 1, 1, 1, 1;
 1, 0, 1, 1, 0, 1;
 1, 0, 0, 1, 0, 0, 1;
 1, 1, 1, 1, 1, 1, 1, 1;
 1, 0, 1, 1, 0, 1, 1, 0, 1;
		

Programs

Extensions

Installed a sequence where definition and terms match, removed erroneous row sums. - R. J. Mathar, Jul 11 2012

A283451 a(n) = Sum_{k=1..n} (-1)^k * A005185(k).

Original entry on oeis.org

-1, 0, -2, 1, -2, 2, -3, 2, -4, 2, -4, 4, -4, 4, -6, 3, -7, 4, -7, 5, -7, 5, -7, 9, -5, 9, -7, 9, -7, 9, -11, 6, -11, 9, -12, 7, -13, 9, -12, 10, -13, 10, -14, 10, -14, 10, -14, 18, -6, 19, -11, 17, -9, 21, -9, 19, -13, 17, -15, 17, -15, 17, -23, 10, -21, 17, -18, 15, -24, 16, -21
Offset: 1

Views

Author

Altug Alkan, Mar 07 2017

Keywords

Examples

			a(7) = -3 because -1 + 1 - 2 + 3 - 3 + 4 - 5 = -3.
		

Crossrefs

Programs

  • PARI
    a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); va = vector(#a, n, sum(k=1, n, (-1)^(k)*a[k]))

A283669 a(n) = q(n-q(n+1)+2) - q(n-q(n)+2) where q(n) = A005185(n).

Original entry on oeis.org

0, -1, -1, 0, -1, -1, 0, 0, 0, 0, -2, 0, 0, -1, 0, -1, -1, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, -1, 1, 0, -1, 1, 2, 0, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, -4, 3, -2, -4, 2, 2, -2, 0, 0, -2, 0, 0, 0, 0, 0, -1, 3, 4, -3, 1, -1, 0, 3, 4, 2, 1, -2, -1, 2, -2, 1, -1, 0, 1, 1, 0, -2, 1, -1, -1, 0, 0, 0, 0
Offset: 1

Views

Author

Altug Alkan, Mar 13 2017

Keywords

Crossrefs

Cf. A005185.

Programs

  • Mathematica
    q[1] = q[2] = 1; q[n_] := q[n] = q[n - q[n - 1]] + q[n - q[n - 2]]; a[n_]:= q[n - q[n + 1] + 2] - q[n - q[n] + 2] ; Table[a[n], {n, 90}] (* Indranil Ghosh, Mar 13 2017 *)
  • PARI
    a=vector(1001); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); va = vector(1000, n, a[n+2-a[n+1]]-a[n+2-a[n]])

A284124 Remainder when 4*n is divided by A005185(n).

Original entry on oeis.org

0, 0, 0, 1, 2, 0, 3, 2, 0, 4, 2, 0, 4, 0, 0, 1, 8, 6, 10, 8, 0, 4, 8, 0, 2, 6, 12, 0, 4, 8, 4, 9, 13, 16, 14, 11, 8, 20, 9, 6, 3, 7, 4, 8, 12, 16, 20, 0, 4, 0, 24, 12, 4, 6, 10, 0, 4, 22, 12, 16, 20, 24, 12, 25, 12, 36, 23, 8, 3, 0, 25, 22, 12, 23, 20, 31, 14, 32, 29, 19, 16
Offset: 1

Views

Author

Altug Alkan, Mar 20 2017

Keywords

Examples

			a(5) = 2 because remainder when 4*5 = 20 is divided by A005185(5) = 3 is 2.
		

Crossrefs

Programs

  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[n - a[n - 2]]; Table[Mod[4 n, a@ n], {n, 81}] (* Michael De Vlieger, Mar 20 2017 *)
  • PARI
    a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); vector(1000, n, (4*n)%a[n])

Formula

a(n) = A008586(n) mod A005185(n) for n > 0.
Previous Showing 21-30 of 246 results. Next