cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 46 results. Next

A240804 a(n) = -2 + product of first n odd primes.

Original entry on oeis.org

1, 13, 103, 1153, 15013, 255253, 4849843, 111546433, 3234846613, 100280245063, 3710369067403, 152125131763603, 6541380665835013, 307444891294245703, 16294579238595022363, 961380175077106319533, 58644190679703485491633, 3929160775540133527939543, 278970415063349480483707693
Offset: 1

Views

Author

N. J. A. Sloane, Apr 14 2014

Keywords

Crossrefs

Programs

  • Magma
    [-2+&*[NthPrime(i+1): i in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Apr 15 2014
  • Mathematica
    Table[Product[Prime[k + 1], {k, 1, n}] - 2, {n, 1, 40}] (* Vincenzo Librandi, Apr 15 2014 *)
    Rest[FoldList[Times,1,Prime[Range[2,20]]]]-2 (* Harvey P. Dale, Mar 17 2015 *)

Formula

a(n) = A070826(n+1)-2. - R. J. Mathar, May 03 2017

A051310 Euclid-Mullin sequence (A000945) with initial value a(1)=13 instead of a(1)=2.

Original entry on oeis.org

13, 2, 3, 79, 6163, 7, 1601, 11, 137, 5, 199, 151, 263, 983, 31, 83, 30187890723499, 23847817657, 37, 67, 9661, 251, 73, 1214623152057970133, 24597089626521443731307390760915220105471840174452030562332559181845834101711082531
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=13; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=factor(n)[1,1]
    first(m)=my(v=vector(m)); v[1]=13; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Aug 22 2015

A051311 Euclid-Mullin sequence (A000945) with initial value a(1)=17 instead of a(1)=2.

Original entry on oeis.org

17, 2, 5, 3, 7, 3571, 31, 395202571, 13, 29, 137, 23, 97, 1896893, 34138453466895150823580146142491, 4639, 61, 181, 43, 19, 11, 59, 25292522503108044617, 4909, 18305191, 467
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=17; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=factor(n)[1,1]
    first(m)=my(v=vector(m)); v[1]=17; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Aug 22 2015

A051313 Euclid-Mullin sequence (A000945) with initial value a(1)=23 instead of a(1)=2.

Original entry on oeis.org

23, 2, 47, 3, 13, 84319, 7109609443, 463, 23403050994721829453179, 7, 5, 57367, 239, 40237, 10575444619218059847586376042094152838881224222904607376771, 31333, 742759, 9444637217
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=23; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=factor(n)[1, 1]
    first(m)=my(v=vector(m)); v[1]=23; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Nov 22 2015

Extensions

a(18)-a(37) from Robert Price, Jul 17 2015

A051314 Euclid-Mullin sequence (A000945) with initial value a(1)=29 instead of a(1)=2.

Original entry on oeis.org

29, 2, 59, 3, 10267, 7, 5, 3689035771, 19, 396029, 489851, 2971, 179, 13, 4441009, 419, 79, 53, 3109, 538004633, 138285071, 241, 263, 443, 11, 17, 951837583454247922680798591029699, 739, 43, 181, 131, 3257, 31, 2237
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=29; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=factor(n)[1, 1]
    first(m)=my(v=vector(m)); v[1]=29; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v; \\ Anders Hellström, Nov 21 2015

A051315 Euclid-Mullin sequence (A000945) with initial value a(1)=31 instead of a(1)=2.

Original entry on oeis.org

31, 2, 3, 11, 23, 47059, 7, 5, 89, 19, 2287, 233, 17, 647, 1607, 12637, 103, 13, 163, 4980301, 521, 83, 16561, 540233, 443516695049428313, 109, 37, 1811, 53, 487, 548519020982014152563328120144563684918808813765009178152503015356294212417026402782591
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    spf:= proc(n) local F;
      F:= select(type, map(t -> t[1], ifactors(n,easy)[2]), integer);
       if F <> [] then min(F)
       else min(numtheory:-factorset(n))
       fi
    end proc:
    a[1]:= 31:
    for i from 2 to 31 do
      a[i]:= spf(1 + mul(a[j],j=1..i-1))
    od:
    seq(a[i],i=1..31); # Robert Israel, Nov 25 2015
  • Mathematica
    a[1]=31; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    gpf(n)=my(f=factor(n)[, 1]); f[#f];
    first(m)=my(v=vector(m)); v[1]=31; for(i=2, m, v[i]=gpf(1+prod(j=1, i-1, v[j]))); v \\ Anders Hellström, Nov 25 2015

A051316 Euclid-Mullin sequence (A000945) with initial value a(1)=37 instead of a(1)=2.

Original entry on oeis.org

37, 2, 3, 223, 31, 7, 127, 5, 11, 17, 157, 390191, 23339, 29, 283, 73, 19, 47, 381735266856929, 149, 83, 71, 311, 9791, 4007, 3101629, 207541, 2591, 13, 2414519329, 107, 41, 53
Offset: 1

Views

Author

Keywords

Comments

a(34) is a 95-digit prime.

Crossrefs

Programs

  • Mathematica
    a[1]=37; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, n-1} ] ] ] ]; Array[a, 15]
  • PARI
    spf(n)=my(f=factor(n)[1, 1]); f; \\ A020639
    first(m)=my(v=vector(m)); v[1]=37; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v \\ Anders Hellström, Nov 26 2015

Formula

a(n) = A020639(1 + Product_{k=1..n-1} a(k)), a(1) = 37.

A051317 Euclid-Mullin sequence (A000945) with initial value a(1)=41 instead of a(1)=2.

Original entry on oeis.org

41, 2, 83, 3, 7, 47, 71, 29, 653, 5, 173, 23, 103058819, 11, 389, 73161901, 168593357, 13, 45613, 347, 211, 53, 400947612985987, 28837, 35111, 913011302795748880783905085999338914209329333652950191830525020998365540320068611
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=41; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, n-1} ] ] ] ]; Array[a, 15]
  • PARI
    spf(n)=my(f=factor(n)[1, 1]); f
    first(m)=my(v=vector(m)); v[1]=41; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v \\ Anders Hellström, Nov 26 2015

A051318 Euclid-Mullin sequence (A000945) with initial value a(1)=43 instead of a(1)=2.

Original entry on oeis.org

43, 2, 3, 7, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, 23003, 30693651606209, 37, 1741, 1313797957, 887, 71, 7127, 109, 23, 97, 159227, 643679794963466223081509857, 103, 1079990819, 9539, 3143065813, 29, 3847, 89, 19, 577, 223
Offset: 1

Views

Author

Keywords

Examples

			Product of first 28 terms +1 is 210102491806660945690525037461258737117339882568590700172677987135969766432980375 44232424110733238484973548134278212304532631, which is divisible by 103. Hence a(29)=103.
		

Crossrefs

Agrees with A000945 from 5th term. Cf. A000946, A005265, A005266.

Programs

  • Mathematica
    a[1]=43; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, n-1} ] ] ] ]; Array[a, 15]
  • PARI
    spf(n)=factor(n)[1, 1]
    first(m)={my(v=vector(m),i,t=43);v[1]=43;for(i=2,m,v[i]=spf(t+1);t*=v[i];);v;} /* Anders Hellström, Jul 19 2015 */

Extensions

a(31)-a(38) from Robert Price, Jul 19 2015

A051319 Euclid-Mullin sequence (A000945) with initial value a(1)=47 instead of a(1)=2.

Original entry on oeis.org

47, 2, 5, 3, 17, 23971, 7, 4022094091, 3673, 11, 32915297, 21513736430048030802333949693291, 43, 349, 613, 37, 6767927, 59, 71249, 19, 4455467, 997, 181, 593, 681271, 113, 13, 1205224649, 1699, 533327, 1361, 29
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=47; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=factor(n)[1, 1]; \\ A020639
    first(m)=my(v=vector(m)); v[1]=47; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v \\ Anders Hellström, Nov 25 2015; corrected by Michel Marcus, Oct 10 2023
Previous Showing 21-30 of 46 results. Next