cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A292630 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)*(BesselI(0,2*x) + BesselI(1,2*x)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 13, 6, 1, 5, 17, 35, 35, 10, 1, 6, 26, 75, 126, 96, 20, 1, 7, 37, 139, 339, 462, 267, 35, 1, 8, 50, 233, 758, 1558, 1716, 750, 70, 1, 9, 65, 363, 1491, 4194, 7247, 6435, 2123, 126, 1, 10, 82, 535, 2670, 9660, 23460, 34016, 24310, 6046, 252, 1, 11, 101, 755, 4451, 19846, 63195, 132339, 160795, 92378, 17303, 462
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 20 2017

Keywords

Comments

A(n,k) is the k-th binomial transform of A001405 evaluated at n.

Examples

			E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k^2 + 2*k + 2)*x^2/2! +  (k^3 + 3*k^2 + 6*k + 3)*x^3/3! + (k^4 + 4*k^3 + 12*k^2 + 12*k + 6)*x^4/4! + ...
Square array begins:
   1,   1,    1,     1,     1,     1,  ...
   1,   2,    3,     4,     5,     6,  ...
   2,   5,   10,    17,    26,    37,  ...
   3,  13,   35,    75,   139,   233,  ...
   6,  35,  126,   339,   758,  1491,  ...
  10,  96,  462,  1558,  4194,  9660,  ...
		

Crossrefs

Columns k=0..5 give A001405, A005773 (with first term deleted), A001700, A026378 (with offset 0), A005573, A122898.
Main diagonal gives A292631.

Programs

  • Maple
    [seq(seq((k)!*add((m-j)^(j-i)/floor(i/2)!/ceil(i/2)!/(j-i)!,i=0..j),j=0..m), m=0..20)]; # Robert Israel, Sep 20 2017
  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[k x] (BesselI[0, 2 x] + BesselI[1, 2 x]), {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(k*x)*(BesselI(0,2*x) + BesselI(1,2*x)).

A349541 E.g.f.: exp(x) * (BesselI(0,8*x) + BesselI(1,8*x)).

Original entry on oeis.org

1, 5, 41, 301, 2513, 20181, 170745, 1423101, 12161441, 103344037, 889924553, 7650373325, 66271512433, 574065261173, 4996181205657, 43511277885597, 380108373809985, 3323551100483397, 29122753514303337, 255427680480306285, 2243831648555990289, 19728657265135701525
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[x] (BesselI[0, 8 x] + BesselI[1, 8 x]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n, k] Binomial[k, Floor[k/2]] 4^k, {k, 0, n}], {n, 0, 21}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k) * binomial(k, k\2) * 4^k); \\ Michel Marcus, Nov 21 2021

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(k,floor(k/2)) * 4^k.
a(n) ~ 3^(2*n + 1) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 26 2021

A104855 Triangle read by rows: T(n,k) (0 <= k <= n) is the number of three-dimensional lattice walks consisting of n unit steps, each in one of the six coordinate directions, starting at the origin, never going below the horizontal plane and having k vertical steps.

Original entry on oeis.org

1, 4, 1, 16, 8, 2, 64, 48, 24, 3, 256, 256, 192, 48, 6, 1024, 1280, 1280, 480, 120, 10, 4096, 6144, 7680, 3840, 1440, 240, 20, 16384, 28672, 43008, 26880, 13440, 3360, 560, 35, 65536, 131072, 229376, 172032, 107520, 35840, 8960, 1120, 70, 262144, 589824
Offset: 0

Views

Author

Emeric Deutsch, Apr 23 2005

Keywords

Examples

			T(2,1)=8 because we have NU, SU, EU, WU, UN, US, UE and UW, where N=(0,1,0),S=(0,-1,0), E=(1,0,0),W=(-1,0,0), U=(0,0,1) and S=(0,0,-1).
Triangle begins:
   1;
   4,  1;
  16,  8,  2;
  64, 48, 24,  3;
		

Crossrefs

Row sums yield A005573. T(n,n) = A001405(n), T(n,0) = A000302(n) (powers of 4).

Programs

  • Maple
    T:=(n,k)->binomial(n,k)*binomial(k,ceil(k/2))*4^(n-k): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form

Formula

T(n, k) = binomial(n, k)*binomial(k, ceiling(k/2))*4^(n-k).

A171814 Triangle T : T(n,k)= A007318(n,k)*A001700(n-k).

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 35, 30, 9, 1, 126, 140, 60, 12, 1, 462, 630, 350, 100, 15, 1, 1716, 2772, 1890, 700, 150, 18, 1, 6435, 12012, 9702, 4410, 1225, 210, 21, 1, 24310, 51480, 48048, 25872, 8820, 1960, 280, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 19 2009

Keywords

Examples

			Triangle begins:
     1;
     3,    1;
    10,    6,    1;
    35,   30,    9,   1;
   126,  140,   60,  12,   1;
   462,  630,  350, 100,  15,  1;
  1716, 2772, 1890, 700, 150, 18, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=n!SeriesCoefficient[Exp[2*x]*(BesselI[0,2*x]+BesselI[1,2*x])*x^k / k!,{x,0,n}]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* Stefano Spezia, Dec 23 2023 *)

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A168491(n), A099323(n+1), A001405(n), A005773(n+1), A001700(n), A026378(n+1), A005573(n), A122898(n) for x = -4, -3, -2, -1, 0, 1, 2, 3 respectively.
Conjectural g.f.: 1/(2*t)*( sqrt( (1 - x*t)/(1 - (4 + x)*t) ) - 1 ) = 1 + (3 + x)*t + (10 + 6*x + x^2)*t^2 + .... - Peter Bala, Nov 10 2013
E.g.f. of column k: exp(2*x)*(BesselI(0,2*x)+BesselI(1,2*x))*x^k / k!. - Mélika Tebni, Dec 23 2023
Previous Showing 11-14 of 14 results.