cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 99 results. Next

A120629 Numbers k with property that -k is not a perfect power and the squarefree part of -k is not congruent to 1 modulo 4.

Original entry on oeis.org

2, 4, 5, 6, 9, 10, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26, 29, 30, 33, 34, 36, 37, 38, 40, 41, 42, 45, 46, 49, 50, 52, 53, 54, 56, 57, 58, 61, 62, 65, 66, 68, 69, 70, 72, 73, 74, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 93, 94, 96, 97, 98, 100, 101, 102, 104, 105, 106
Offset: 1

Views

Author

Gerard P. Michon, Jun 20 2006

Keywords

Comments

According to a famous 1927 conjecture of Emil Artin, modified by Dick Lehmer, these negative numbers are primitive roots modulo each prime of a set whose density among primes equals Artin's constant (see A005596). The positive numbers with the same property are given by A085397.

Examples

			-3 and -12 are not in the set because their squarefree parts are equal to -3, which is congruent to 1 modulo 4. -32 is not in the set because it is the fifth power of -2. -1 is excluded because it is an odd power of -1.
		

Crossrefs

Programs

  • Mathematica
    SquareFreePart[n_] := Times @@ Apply[ Power, ({#[[1]], Mod[#[[2]], 2]} & ) /@ FactorInteger[n], {1}]; perfectPowerQ[n_] := (r = False; For[k = 2, k <= Abs[n] + 2, k++, If[Reduce[n == x^k, {x}, Integers] =!= False, r = True; Break[]]]; r); ok[n_] := ! perfectPowerQ[-n] && Mod[SquareFreePart[-n], 4] != 1; Select[Range[106], ok](* Jean-François Alcover, Feb 14 2012 *)

A146481 Decimal expansion of Product_{n>=2} (1 - 1/(n*(n-1))).

Original entry on oeis.org

2, 9, 6, 6, 7, 5, 1, 3, 4, 7, 4, 3, 5, 9, 1, 0, 3, 4, 5, 7, 0, 1, 5, 5, 0, 2, 0, 2, 1, 9, 1, 4, 2, 8, 6, 4, 8, 6, 4, 8, 3, 1, 5, 1, 9, 1, 7, 8, 9, 4, 7, 8, 9, 0, 8, 1, 6, 7, 3, 5, 7, 3, 3, 1, 6, 5, 9, 0, 6, 1, 6, 2, 9, 1, 5, 1, 9, 6, 0, 8, 8, 8, 3, 6, 6, 7, 4, 8, 1, 6, 4, 0, 2, 1, 2, 6, 2, 2, 1, 4, 5, 4, 1, 7, 7
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

Product of Artin's constant A005596 and the equivalent almost-prime products.

Examples

			0.2966751347435910345... = (1 - 1/2)*(1 - 1/6)*(1 - 1/12)*(1 - 1/20)*...
		

Crossrefs

Cf. A005596.

Programs

  • Maple
    phi := (1+sqrt(5))/2; evalf(-sin(Pi*phi)/Pi) ; # R. J. Mathar, Feb 20 2009
  • Mathematica
    RealDigits[-Cos[Pi*Sqrt[5]/2]/Pi, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)

Formula

The logarithm is -Sum_{s>=2} Sum_{j=1..floor(s/(1+r))} binomial(s-r*j-1, j-1)*(1-Zeta(s))/j at r=1.
s*Sum_{j=1..floor(s/2)} binomial(s-j-1, j-1)/j = A001610(s-1).
Equals 1/Product_{k=1..2} Gamma(1-x_k) = -sin(A094886)/A000796, where x_k are the 2 roots of the polynomial x*(x+1)-1. [R. J. Mathar, Feb 20 2009]

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A146482 Decimal expansion of Product_{q in A001358} (1-1/(q*(q-1))).

Original entry on oeis.org

8, 3, 9, 0, 4, 2, 1, 5, 4, 2, 7, 4, 4, 6, 8, 6, 0, 0, 7, 6, 8, 4, 6, 2, 1, 1, 1, 1, 9, 4, 5, 4, 1, 2, 5, 4, 9, 2, 8, 3, 0, 7, 1, 6, 6, 7, 6, 0, 8, 8, 2, 7, 3, 3, 0, 0, 0
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

Semiprime analog of A005596.

Examples

			0.839042154274468600768... = (1-1/12)*(1-1/30)*(1-1/72)*(1-1/90)*(1-1/182)*..
		

Formula

The logarithm is -sum_{s>=2} sum_{j=1..floor[s/(1+r)]} binomial(s-r*j-1,j-1)*P_2(s)/j at r=1, where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900.

A146483 Decimal expansion of Product_{q in A014612} (1-1/(q*(q-1))).

Original entry on oeis.org

9, 5, 8, 7, 5, 2, 1, 1, 6, 4, 3, 5, 7, 3, 0, 9, 2, 7, 7, 1, 4, 7, 4, 0, 2, 5, 6, 5, 7, 8, 9, 2, 8, 6, 1, 2, 6, 5, 9, 4, 9, 0, 4, 4, 8, 5, 0, 2, 3, 5, 9, 9, 0, 1, 5, 9, 2
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

3-almost prime analog of A005596.

Examples

			0.9587521164357309277147402... = (1-1/56)*(1-1/132)*(1-1/306)*(1-1/380)*..
		

Formula

The logarithm is -sum_{s>=2} sum_{j=1..floor[s/(1+r)]} binomial(s-r*j-1,j-1)*P_3(s)/j at r=1, where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900.

A146484 Decimal expansion of Product_{q in A014613} (1-1/(q*(q-1))).

Original entry on oeis.org

9, 8, 9, 6, 2, 8, 8, 6, 7, 1, 6, 6, 4, 2, 7, 6, 6, 5, 5, 0, 4, 3, 2, 2, 8, 3, 7, 4, 5, 7, 9, 2, 4, 3, 0, 8, 0, 5, 7, 5, 5, 7, 5, 8, 9, 3, 5, 0, 2, 9, 6, 5, 3, 4, 8, 4, 4
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

4-almost prime analog of A005596.

Examples

			0.989628867166427665504.. = (1-1/240)*(1-1/552)*...
		

Formula

The logarithm is -sum_{s>=2} sum_{j=1..floor[s/(1+r)]} binomial(s-r*j-1,j-1)*P_4(s)/j at r=1, where P_k(s) are the k-almost prime zeta functions of arXiv:0803.0900.

A271869 Decimal expansion of Matthews' constant C_3, an analog of Artin's constant for primitive roots.

Original entry on oeis.org

0, 6, 0, 8, 2, 1, 6, 5, 5, 1, 2, 0, 3, 0, 5, 0, 8, 6, 0, 0, 5, 6, 3, 2, 2, 7, 5, 4, 6, 1, 9, 2, 0, 8, 5, 5, 4, 3, 1, 3, 3, 7, 3, 7, 3, 4, 7, 5, 7, 6, 7, 9, 4, 1, 9, 8, 2, 6, 4, 3, 4, 0, 3, 1, 5, 0, 4, 0, 8, 0, 4, 3, 5, 0, 7, 2, 1, 2, 5, 6, 1, 6, 9, 5, 8, 6, 1, 8, 8, 8, 7, 3, 4, 8, 5, 8, 6, 6, 2, 4, 6, 8, 7, 3, 4, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 16 2016

Keywords

Examples

			0.0608216551203050860056322754619208554313373734757679419826434...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.

Crossrefs

Programs

  • Mathematica
    digits = 70; $MaxExtraPrecision = 1000; m0 = 2000; dm = 200; Clear[s]; LR =
    LinearRecurrence[{2, 2, -6, 4, -1}, {0, 6, 0, 22, 5}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> 2 m0, WorkingPrecision -> digits+10] // Exp; s[m0]; s[m = m0+dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[ s[m-dm], 10, digits][[1]], Print[m]; m = m + dm]; Join[{0}, RealDigits[ s[m], 10, digits][[1]]]
  • PARI
    prodeulerrat(1 - (p^3 - (p - 1)^3)/(p^3*(p - 1))) \\ Amiram Eldar, Mar 16 2021

Formula

C_3 = Product_{p prime} 1 - (p^3 - (p - 1)^3)/(p^3*(p - 1)).

Extensions

More digits from Vaclav Kotesovec, Jun 19 2020

A306198 Multiplicative with a(p^e) = p^(e-1)*(p^2 - p - 1).

Original entry on oeis.org

1, 1, 5, 2, 19, 5, 41, 4, 15, 19, 109, 10, 155, 41, 95, 8, 271, 15, 341, 38, 205, 109, 505, 20, 95, 155, 45, 82, 811, 95, 929, 16, 545, 271, 779, 30, 1331, 341, 775, 76, 1639, 205, 1805, 218, 285, 505, 2161, 40, 287, 95, 1355, 310, 2755, 45, 2071, 164, 1705, 811
Offset: 1

Views

Author

Jianing Song, Jan 28 2019

Keywords

Comments

For any positive integer n and any m coprime to n, define R(n,m) = Product_{primes p divides n} (p - [m == 1 (mod p)]), where [] is an Iverson branket. Then we have the following conjecture: (Start)
Let k == 2, 3 (mod 4) be a squarefree number, b be any positive integer such that k*b^2 is not a perfect power and not equal to -1, n be either coprime to or divisible by 4*k. Define Q(N,k*b^2,n,m) = # {primes p <= N : p == m (mod n), k*b^2 is a primitive modulo p}, then:
(a) if gcd(n, 4*k) = 1, then Q(N,k*b^2,n,m)/(C*PrimePi(N)) ~ R(n,m)/a(n);
(b) if 4*k divides n, then Q(N,k*b^2,n,m)/(C*PrimePi(N)) ~ 2*R(n,m)/a(n) if Jacobi(k/m) = -1 and 0 if Jacobi(k/m) = +1,
Where C is the Artin's constant = A005596, PrimePi = A000720. (End)
(Note that Sum_{m=1..n, gcd(m,n)=1} R(n,m) = a(n).)
For example, let N = 10^6:
k*b^2 | n | m | Q(N,k*b^2,n,m) | Q(N,k*b^2,n,m)/(C*PrimePi(N))
2 | 8 | 3 | 14642 | 0.498794... approx = 2/4
3 | 5 | 1 | 6192 | 0.210936... approx = 4/19
-2 | 48 | 13 | 2933 | 0.099915... approx = 4/40
-5 | 9 | 5 | 5933 | 0.202113... approx = 3/15

Crossrefs

Cf. A000720 (PrimePi), A005596 (Artin's constant), A086463.

Programs

  • Maple
    P := (p, e) -> p^(e-1)*(p^2 - p - 1):
    a := n -> mul(P(f[1], f[2]), f in ifactors(n)[2]):
    seq(a(n), n=1..58); # Peter Luschny, Feb 13 2019
  • Mathematica
    a[n_] := Product[{p, e} = pe; p^(e-1) (p^2-p-1), {pe, FactorInteger[n]}]; a[1] = 1; Array[a, 58] (* Jean-François Alcover, Jul 22 2019 *)
  • PARI
    a(n) = my(f=factor(n)); prod(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); (p^2 - p - 1)*p^(e-1))

Formula

Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/18) * Product_{p prime} (1 - 3/p^2 + 1/p^3 + 1/p^4) = 0.1314639252... . - Amiram Eldar, Dec 01 2022

A333315 a(n) = Sum_{k=1..n} phi(prime(k)-1), where phi is the Euler totient function (A000005).

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 22, 28, 38, 50, 58, 70, 86, 98, 120, 144, 172, 188, 208, 232, 256, 280, 320, 360, 392, 432, 464, 516, 552, 600, 636, 684, 748, 792, 864, 904, 952, 1006, 1088, 1172, 1260, 1308, 1380, 1444, 1528, 1588, 1636, 1708, 1820, 1892, 2004, 2100, 2164
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2020

Keywords

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 30.

Crossrefs

Partial sums of A008330.

Programs

  • Mathematica
    Accumulate @ EulerPhi[Select[Range[300], PrimeQ] - 1]
  • PARI
    a(n) = sum(k=1, n, eulerphi(prime(k)-1)); \\ Michel Marcus, Mar 15 2020

Formula

a(n) = Sum_{k=1..n} A008330(k).
a(n) ~ A * Li(n^2), where A is Artin's constant (A005596), and Li(x) is the logarithmic integral function.

A340154 Primes p such that p == 5 (mod 6) and p+1 is squarefree.

Original entry on oeis.org

5, 29, 41, 101, 113, 137, 173, 257, 281, 317, 353, 389, 401, 461, 509, 569, 617, 641, 653, 677, 761, 797, 821, 857, 929, 941, 977, 1109, 1181, 1193, 1217, 1229, 1289, 1301, 1361, 1373, 1409, 1433, 1481, 1553, 1613, 1697, 1721, 1877, 1901, 1913, 1973, 2081, 2129
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2020

Keywords

Comments

Clary and Fabrykowski (2004) proved that this sequence is infinite, and that its relative density in the sequence of primes of the form 6*k+5 (A007528) is 4*A/5 = 0.29916465..., where A is Artin's constant (A005596).

Examples

			5 is a term since it is prime, 5 == 5 (mod 6), and 5+1 = 6 = 2*3 is squarefree.
		

Crossrefs

Intersection of A007528 and A049097.

Programs

  • Mathematica
    Select[Range[2000], Mod[#, 6] == 5 && PrimeQ[#] && SquareFreeQ[# + 1] &]

A351682 Prime numbers p such that the (p-1)-st Bell number B(p-1) is a primitive root modulo p.

Original entry on oeis.org

2, 3, 11, 13, 17, 19, 29, 31, 47, 53, 71, 103, 113, 127, 131, 137, 139, 149, 173, 179, 181, 191, 211, 233, 239, 241, 251, 257, 263, 269, 293, 317, 347, 367, 379, 401, 431, 439, 449, 461, 503, 509, 523, 541, 557, 587, 607, 617, 619, 647, 653, 683, 691, 733, 743, 761, 773, 797, 821, 823, 827, 853, 859, 881, 919, 929
Offset: 1

Views

Author

Luis H. Gallardo, May 04 2022

Keywords

Comments

Heuristically, the density of the sequence in the primes should approach Artin's constant: 0.3739558136...

Examples

			For n = 2 one has a(2) = 3 since B(2) = 2 is a primitive root modulo 3.
		

Crossrefs

Programs

  • Maple
    filter:= proc(p) local b;
      b:= combinat:-bell(p-1);
      numtheory:-order(b,p) = p-1
    end proc:
    select(filter, [seq(ithprime(i),i=1..200)]); # Robert Israel, May 04 2023

Extensions

Corrected by Robert Israel, May 04 2023
Previous Showing 81-90 of 99 results. Next