cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A271742 Decimal expansion of Hardy-Littlewood constant C_7 = Product_{p prime > 7} 1/(1-1/p)^7 (1-7/p).

Original entry on oeis.org

3, 6, 9, 4, 3, 7, 5, 1, 0, 3, 8, 6, 4, 9, 8, 6, 8, 9, 3, 2, 3, 1, 9, 0, 7, 4, 9, 8, 7, 6, 7, 5, 0, 7, 7, 7, 0, 5, 5, 3, 7, 2, 9, 1, 3, 8, 9, 3, 0, 3, 1, 8, 2, 5, 2, 9, 1, 0, 1, 2, 3, 0, 2, 9, 0, 7, 7, 3, 9, 2, 9, 9, 5, 7, 3, 9, 1, 7, 7, 7, 8, 4, 2, 8, 2, 7, 6, 8, 3, 3, 5, 0, 0, 0, 6, 9, 3, 1, 7
Offset: 0

Views

Author

Jean-François Alcover, Apr 17 2016

Keywords

Examples

			0.3694375103864986893231907498767507770553729138930318252910123...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 86.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1100; digits = 99; terms = 1000; P[n_] := PrimeZetaP[ n] - 1/2^n - 1/3^n - 1/5^n - 1/7^n; LR = Join[{0, 0}, LinearRecurrence[ {8, -7}, {-42, -336}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[ NSum[ r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First
  • PARI
    prodeulerrat(1/(1-1/p)^7*(1-7/p), 1, 11) \\ Amiram Eldar, Mar 11 2021

A337606 Decimal expansion of the Gaussian twin prime constant: the Hardy-Littlewood constant for A096012.

Original entry on oeis.org

4, 8, 7, 6, 2, 2, 7, 7, 8, 1, 1, 1, 5, 7, 1, 7, 6, 8, 6, 1, 1, 6, 4, 6, 3, 9, 1, 4, 5, 2, 3, 8, 8, 4, 2, 3, 1, 3, 1, 6, 7, 7, 1, 2, 4, 4, 2, 9, 7, 3, 5, 7, 6, 3, 7, 7, 0, 1, 8, 1, 5, 8, 2, 9, 7, 2, 3, 6, 5, 6, 9, 0, 3, 4, 5, 4, 0, 0, 9, 2, 3, 4, 9, 8, 1, 0, 6, 6, 6, 1, 7, 4, 6, 4, 8, 5, 1, 9, 1, 4, 3, 3, 2, 8, 4, 1
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

The name of this constant was suggested by Finch (2003).
Gaussian twin primes on the line x + i in the complex plane are Gaussian primes pair of the form (m - 1 + i, m + 1 + i). The numbers m are numbers such that (m-1)^2 + 1 and (m+1)^2 + 1 are both primes (A096012 plus 1).
Shanks (1960) conjectured that the number of these pairs with m <= x is asymptotic to c * li_2(x), where li_2(x) = Integral_{t=2..n} (1/log(t)^2) dt, and c is this constant. He defined c as in the formula section and evaluated it by 0.4876.
The first 100 digits of 4*c were calculated by Ettahri et al. (2019).

Examples

			0.487622778111571768611646391452388423131677124429735...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 90.

Crossrefs

Similar constants: A005597, A331941, A337607, A337608.

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi^2/8 * Zs[4, 1, 4]/Z[4, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

Formula

Equals (Pi^2/8) * Product_{primes p == 1 (mod 4)} (1 - 4/p)*((p + 1)/(p - 1))^2.

Extensions

More digits from Vaclav Kotesovec, Jan 15 2021

A337607 Decimal expansion of Shanks's constant: the Hardy-Littlewood constant for A000068.

Original entry on oeis.org

6, 6, 9, 7, 4, 0, 9, 6, 9, 9, 3, 7, 0, 7, 1, 2, 2, 0, 5, 3, 8, 9, 2, 2, 4, 3, 1, 5, 7, 1, 7, 6, 4, 4, 0, 6, 6, 8, 8, 3, 7, 0, 1, 5, 7, 4, 3, 6, 4, 8, 2, 4, 1, 8, 5, 7, 3, 2, 9, 8, 5, 2, 2, 8, 4, 5, 2, 4, 6, 7, 9, 9, 9, 5, 6, 4, 5, 7, 1, 4, 7, 2, 7, 3, 1, 5, 0, 6, 2, 1, 0, 2, 1, 4, 3, 5, 9, 3, 7, 3, 5, 0, 2, 7, 3, 2
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

Named by Finch (2003) after the American mathematician Daniel Shanks (1917 - 1996).
Shanks (1961) conjectured that the number of primes of the form m^4 + 1 (A037896) with m <= x is asymptotic to c * li(x), where li(x) is the logarithmic integral function and c is this constant. He defined c as in the formula section and evaluated it by 0.66974.
The first 100 digits of this constant were calculated by Ettahri et al. (2019).

Examples

			0.669740969937071220538922431571764406688370157436482...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 90.

Crossrefs

Similar constants: A005597, A331941, A337606, A337608.

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi^2/(16*Log[1+Sqrt[2]]) * Zs[8, 1, 4]/Z[8, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

Formula

Equals (Pi^2/(16*log(1+sqrt(2)))) * Product_{primes p == 1 (mod 8)} (1 - 4/p)*((p + 1)/(p - 1))^2 = (Pi/8) * A088367 * A334826.

Extensions

More digits from Vaclav Kotesovec, Jan 15 2021

A337608 Decimal expansion of Lal's constant: the Hardy-Littlewood constant for A217795.

Original entry on oeis.org

7, 9, 2, 2, 0, 8, 2, 3, 8, 1, 6, 7, 5, 4, 1, 6, 6, 8, 7, 7, 5, 4, 5, 5, 5, 6, 6, 5, 7, 9, 0, 2, 4, 1, 0, 1, 1, 2, 8, 9, 3, 2, 2, 5, 0, 9, 8, 6, 2, 2, 1, 1, 1, 7, 2, 2, 7, 9, 7, 3, 4, 5, 2, 5, 6, 9, 5, 1, 4, 1, 5, 4, 9, 4, 4, 1, 2, 4, 9, 0, 6, 6, 0, 2, 9, 5, 3, 8, 8, 3, 9, 8, 0, 2, 7, 5, 2, 9, 2, 7, 8, 7, 3, 9, 7, 3
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

Shanks (1967) conjectured that the number of primes of the form (m + 1)^4 + 1 such that (m - 1)^4 + 1 is also a prime (A217795 plus 1), with m <= x, is asymptotic to c * li_2(x), where li_2(x) = Integral_{t=2..n} (1/log(t)^2) dt, and c is this constant. He defined c as in the formula section, evaluated it by 0.79220 and named it after the mathematician Mohan Lal, who conjectured the asymptotic formula without evaluating this constant.
The first 100 digits of this constant were calculated by Ettahri et al. (2019).

Examples

			0.792208238167541668775455566579024101128932250986221...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 90-91.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121;
    f[p_] := (p-8)*(p+1)^4/((p-1)^4*p);
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*(P[8, 1, m] - 1/17^m); sump = sump + difp; m++];
    RealDigits[Chop[N[f[17] * Pi^4/(2^7 * Log[1+Sqrt[2]]^2) * Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)

Formula

Equals (Pi^4/(2^7 * log(1+sqrt(2))^2)) * Product_{primes p == 1 (mod 8)} (1 - 4/p)^2 * ((p + 1)/(p - 1))^4 * p*(p-8)/(p-4)^2 = (Pi^2/32) * A088367^2 * A334826^2 * A210630 = 2 * A337607^2 * A210630.

Extensions

More terms from Vaclav Kotesovec, Jan 16 2021

A387362 Cyclic numbers k such that k+2 is also a cyclic number.

Original entry on oeis.org

1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 35, 41, 51, 59, 65, 67, 69, 71, 77, 83, 85, 87, 89, 95, 101, 107, 113, 131, 137, 139, 141, 143, 149, 157, 159, 161, 177, 179, 185, 191, 197, 209, 211, 213, 215, 221, 227, 233, 239, 247, 249, 255, 257, 263, 265, 267, 269, 281, 293
Offset: 1

Views

Author

Amiram Eldar, Aug 27 2025

Keywords

Comments

All the lesser members of twin primes (A001359) are terms since every prime is a cyclic number (A003277).
Cohen (2025) conjectured and Pomerance (2025) proved that this sequence is infinite.

Crossrefs

Subsequence of A003277.
A001359 is a subsequence.

Programs

  • Mathematica
    cyclicQ[n_] := cyclicQ[n] = CoprimeQ[n, EulerPhi[n]]; Select[Range[1, 300, 2], And @@ cyclicQ[{#, # + 2}] &]
  • PARI
    iscyclic(k) = gcd(k, eulerphi(k)) == 1;
    isok(k) = k % 2 && iscyclic(k) && iscyclic(k+2);

Formula

The number of terms <= x is ~ 2 * C_2 * x / (exp(gamma) * log(log(log(x))))^2, where C_2 = A005597, and gamma = A001620 (Pomerance, 2025).

A387363 The number of decompositions of 2*n into ordered sums of two cyclic numbers.

Original entry on oeis.org

1, 3, 3, 4, 3, 4, 5, 6, 8, 8, 7, 8, 7, 6, 9, 8, 11, 12, 11, 10, 12, 12, 13, 16, 12, 14, 16, 12, 13, 14, 13, 16, 19, 14, 19, 20, 19, 20, 20, 20, 21, 26, 19, 24, 26, 22, 25, 26, 24, 26, 33, 26, 27, 30, 26, 28, 32, 26, 29, 38, 25, 30, 34, 26, 33, 34, 29, 30, 41, 28
Offset: 1

Views

Author

Amiram Eldar, Aug 27 2025

Keywords

Comments

Analogous to A002372 with cyclic numbers (A003277) instead of odd primes.
Pomerance (2025) proved that a(n) > 0 for every sufficiently large n.

Examples

			a(1) = 1 since 2*1 = 1 + 1.
a(2) = 3 since 2*2 = 1 + 3 = 2 + 2 = 3 + 1.
a(3) = 3 since 2*3 = 1 + 5 = 3 + 3 = 5 + 1.
		

Crossrefs

Programs

  • Mathematica
    cyclicQ[n_] := cyclicQ[n] = CoprimeQ[n, EulerPhi[n]]; a[n_] := Count[Range[2*n], _?(And @@ cyclicQ[{#, 2*n-#}] &)]; Array[a, 100]
  • PARI
    iscyclic(k) = gcd(k, eulerphi(k)) == 1;
    a(n) = sum(k = 1, 2*n, iscyclic(k) * iscyclic(2*n-k));

Formula

a(n) ~ C_2 * n / (exp(gamma) * log(log(log(n))))^2 * Product_{p | n, p odd prime < log(log(n/2))} (p-1)/(p-2), where C_2 = A005597, and gamma = A001620 (Pomerance, 2025).

A246061 Decimal expansion of lim_{n->infinity} ((1/log(n)^2)*Product_{2 < p < n, p prime} p/(p-2)).

Original entry on oeis.org

1, 2, 0, 1, 3, 0, 3, 5, 5, 9, 9, 6, 7, 3, 6, 2, 2, 4, 1, 2, 4, 7, 5, 5, 5, 9, 5, 9, 2, 0, 7, 3, 8, 3, 4, 8, 2, 4, 5, 3, 8, 3, 8, 4, 4, 9, 4, 2, 7, 1, 1, 3, 0, 8, 5, 1, 8, 1, 9, 5, 5, 9, 7, 4, 1, 4, 8, 0, 0, 9, 9, 7, 7, 9, 4, 3, 7, 7, 5, 2, 2, 5, 9, 6, 7, 0, 6, 4, 3, 1, 8, 4, 8, 6, 1, 9, 7, 6, 0, 8, 8
Offset: 1

Views

Author

Jean-François Alcover, Sep 11 2014

Keywords

Examples

			1.201303559967362241247555959207383482453838449427113...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood constants, p. 86.

Crossrefs

Programs

  • Mathematica
    digits = 101; s[n_] := (1/n)* N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], digits + 60]; C2 = (175/256)*Product[(Zeta[ n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[ n]), {n, 2, digits + 60}]; RealDigits[Exp[2*EulerGamma]/(4*C2), 10, digits] // First
  • PARI
    exp(2*Euler)/(4*prodeulerrat(1-1/(p-1)^2, 1, 3)) \\ Amiram Eldar, Apr 27 2025

Formula

Equals exp(2*EulerGamma)/(4*C_2), where C_2 is the twin primes constant A005597.

A271886 Decimal expansion of the constant D related to the conjectured asymptotic expression of the counting function of prime triples as D*n/log(n)^3.

Original entry on oeis.org

2, 8, 5, 8, 2, 4, 8, 5, 9, 5, 7, 1, 9, 2, 2, 0, 4, 3, 2, 4, 3, 0, 1, 3, 4, 6, 6, 0, 7, 2, 6, 3, 5, 0, 8, 7, 8, 0, 3, 9, 2, 9, 5, 5, 9, 2, 9, 9, 5, 6, 7, 6, 0, 2, 9, 0, 4, 8, 8, 0, 5, 0, 7, 2, 1, 9, 0, 5, 3, 0, 7, 5, 9, 0, 2, 2, 6, 2, 6, 3, 4, 6, 9, 3, 6, 1, 3, 1, 1, 2, 4, 0, 4, 3, 8, 2
Offset: 1

Views

Author

Jean-François Alcover, Apr 16 2016

Keywords

Examples

			2.8582485957192204324301346607263508780392955929956760290488...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 85.

Crossrefs

Cf. A005597.

Programs

  • Mathematica
    $MaxExtraPrecision = 800; digits = 96; terms = 1000; P[n_] := PrimeZetaP[n] - 1/2^n - 1/3^n; LR = Join[{0, 0}, LinearRecurrence[{4, -3}, {-6, -24}, terms + 10]]; r[n_Integer] := LR[[n]]; (9/2)*Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First
  • PARI
    (9/2) * prodeulerrat(p^2*(p-3)/(p-1)^3, 1, 5) \\ Amiram Eldar, Mar 11 2021

Formula

D = (9/2) Product_{p prime > 3} p^2(p-3)/(p-1)^3.

A271951 Decimal expansion of (1/2) Product_{p prime} 1+1/(p-1)^3, a constant related to I. M. Vinogradov's proof of the "ternary" Goldbach conjecture.

Original entry on oeis.org

1, 1, 5, 0, 4, 8, 0, 7, 7, 2, 3, 5, 6, 6, 1, 8, 5, 2, 7, 2, 7, 8, 4, 8, 8, 0, 7, 4, 3, 7, 4, 6, 9, 8, 0, 9, 0, 6, 3, 0, 3, 9, 3, 2, 9, 8, 5, 1, 1, 0, 8, 3, 6, 8, 0, 6, 8, 8, 1, 9, 3, 0, 5, 9, 0, 2, 2, 8, 2, 6, 3, 2, 3, 2, 5, 4, 3, 8, 0, 1, 3, 7, 1, 5, 7, 4, 0, 5, 2, 0, 9, 2, 9, 9, 4, 3, 6, 3, 8
Offset: 1

Views

Author

Jean-François Alcover, Apr 17 2016

Keywords

Examples

			1.150480772356618527278488074374698090630393298511083680688193059...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 88.

Crossrefs

Cf. A005597.

Programs

  • Mathematica
    $MaxExtraPrecision = 1600; digits = 99; terms = 1600; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0, 0}, LinearRecurrence[{4, -6, 3}, {3, 12, 30}, terms + 10]]; r[n_Integer] := LR[[n]]; (1/2) Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First
  • PARI
    (1/2) * prodeulerrat(1+1/(p-1)^3) \\ Amiram Eldar, Mar 14 2021

A374831 Decimal expansion of Product_{p prime} (1 - (1/(p*(p - 1)))*p^2/(p^2 + 1)).

Original entry on oeis.org

4, 5, 8, 9, 3, 7, 4, 9, 8, 5, 0, 5, 4, 3, 5, 9, 6, 1, 3, 0, 6, 3, 4, 2, 6, 1, 8, 1, 0, 0, 1, 8, 9, 3, 8, 5, 6, 7, 2, 0, 0, 8, 1, 6, 3, 7, 4, 5, 2, 8, 9, 8, 1, 2, 3, 4, 2, 8, 7, 5, 7, 7, 7, 7, 3, 1, 7, 5, 4, 5, 6, 6, 1, 2, 2, 5, 4, 3, 0, 8, 5, 8, 9, 2, 2, 8, 6, 2, 5, 4, 3, 2, 0, 9, 3, 5, 8, 0, 7, 8, 2, 5, 7, 2, 9
Offset: 0

Views

Author

Stefano Spezia, Jul 21 2024

Keywords

Examples

			0.4589374985054359613063426181...
		

Crossrefs

Cf. A005596, A005597, A065414, A065418, A065419, A374830 (lower bound).

Programs

  • PARI
    prodeulerrat(1-p^2/(p*(p-1)*(p^2+1)))
Previous Showing 31-40 of 44 results. Next