cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A246065 a(n) = Sum_{k=0..n}C(n,k)^2*C(2k,k)/(2k-1), where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).

Original entry on oeis.org

-1, 1, 9, 39, 177, 927, 5463, 34857, 234657, 1641471, 11820135, 87080265, 653499135, 4979882385, 38441107305, 300027646647, 2364113123073, 18784242756927, 150351698420247, 1211310469545081, 9816017765368671, 79963826730913809, 654504197331971961, 5380270242617370951
Offset: 0

Views

Author

Zhi-Wei Sun, Aug 24 2014

Keywords

Comments

a(n) is always an integer since (2k-1)|C(2k,k) for any nonnegative integer k.
Conjecture: (i) The sequence a(n+1)/a(n) (n = 2,3,...) is strictly increasing to the limit 9, and the sequence a(n+1)^(1/(n+1))/a(n)^(1/n) (n = 1,2,3,...) is strictly decreasing to the limit 1.
(ii) sum_{k=0}^{n-1}a(k) == 0 (mod n^2) for all n > 0. Moreover, for any prime p we have sum_{k=0}^{p-1}a(k) == -p^2*(1+9*(p/3))/2 (mod p^3), where (p/3) is the Legendre symbol.
We are able to prove n | sum_{k=0}^{n-1}a(k). Note also that sum_{k=0}^{n-1}a(k)*9^(n-1-k) = -n^2*A086618(n-1) for all n > 0 since both sides satisfy the same recurrence via the Zeilberger algorithm.
The congruence (0 mod n^2) in (ii) is true, see the formula for A246138 in terms of A005802. - Mark van Hoeij, Nov 07 2023

Examples

			a(2) = 9 since Sum_{k=0,1,2}C(2,k)^2*C(2k,k)/(2k-1) = -1 + 8 + 6/3 = 9.
		

Crossrefs

Programs

  • Maple
    a := n -> -hypergeom([-1/2, -n, -n], [1, 1], 4):
    seq(simplify(a(n)), n=0..23); # Peter Luschny, Nov 07 2023
    ogf := -(1-9*x)^(1/4)*hypergeom([-1/4, 3/4],[1],64*x^3/((1-9*x)*(x-1)^3))/(1-x)^(5/4);
    series(ogf, x=0, 25); # Mark van Hoeij, Nov 12 2023
  • Mathematica
    a[n_]:=Sum[Binomial[n,k]^2*Binomial[2k,k]/(2k-1),{k,0,n}]
    Table[a[n],{n,0,20}]

Formula

Recurrence (obtained via the Zeilberger algorithm):
9*(n+1)^2*a(n) -(19n^2+58n+63)*a(n+1) + (11n^2+46n+47)*a(n+2)-(n+3)^2*a(n+3) = 0.
a(n) ~ A086618(n)/2 ~ 3^(2*n + 5/2)/(16*Pi*n^2) as n tends to the infinity.
a(n) = (9*(2*n+1)^2*A002893(n) - 4*(n+1)^2*A002893(n+1))/3. - Mark van Hoeij, Nov 07 2023
a(n) = -hypergeom([-1/2, -n, -n], [1, 1], 4). - Peter Luschny, Nov 07 2023

A246138 a(n) = (Sum_{k=0..n-1} A246065(k)) / n^2.

Original entry on oeis.org

-1, 0, 1, 3, 9, 32, 135, 648, 3409, 19176, 113535, 700125, 4463415, 29256120, 196334697, 1344542787, 9371335905, 66335058128, 476022873279, 3457886816997, 25394948961831, 188353304179920, 1409578821465129, 10635308054118792, 80845157085234975
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 25 2014

Keywords

Comments

Part (ii) of the conjecture in A246065 implies that all the terms in the current sequence are integers.
Conjecture: The sequence a(n+1)/a(n) (n = 4,5,...) is strictly increasing to the limit 9, and the sequence a(n+1)^(1/(n+1))/a(n)^(1/n) (n = 3,4,...) is strictly decreasing to the limit 1.

Examples

			a(5) = 9 since sum_{k=0}^{5-1}A246065(k) = -1 + 1 + 9 + 39 + 177 = 225 = 5^2*9.
		

Crossrefs

Programs

  • Maple
    ogf := (1-((9*x-1)/(x-1))^(3/4)*hypergeom([-1/4, 3/4],[1],-64*x/(9*x-1)^3/(x-1)))/6;
    series(ogf, x=0, 25); # Mark van Hoeij, Nov 12 2023
  • Mathematica
    s[n_]:=Sum[Binomial[n,k]^2*Binomial[2k,k]/(2k-1),{k,0,n}]
    a[n_]:=Sum[s[k],{k,0,n-1}]/n^2
    Table[a[n],{n,1,25}]

Formula

Recurrence: n^2*a(n) = 2*(n-2)*(5*n-8)*a(n-1) - 9*(n-2)^2*a(n-2). - Vaclav Kotesovec, Aug 27 2014
a(n) ~ 3^(2*n+5/2) / (128*Pi*n^4). - Vaclav Kotesovec, Aug 27 2014
a(n) = ((3*n+2)*(3*n-2)*A005802(n-1) - (n+2)^2*A005802(n))/4. - Mark van Hoeij, Nov 06 2023

A342862 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 2143. 0 <= k <= A028723(n + 1).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 11, 4, 2, 513, 88, 53, 33, 18, 8, 6, 0, 0, 1, 2761, 642, 495, 340, 262, 160, 172, 65, 58, 39, 14, 6, 18, 0, 0, 6, 0, 0, 2, 15767, 4567, 4099, 3007, 2692, 1832, 2171, 1152, 1291, 968, 728, 457, 566, 174, 176, 221, 129, 14, 122, 29, 38, 52, 8, 0, 32, 9, 0, 10, 0, 0, 8, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the pattern 3412.
First column is A005802.

Examples

			Triangle begins:
  n\k|       0        1        2        3        4        5        6
  ---+-------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,       1;
   5 |     103,      11,       4,       2;
   6 |     513,      88,      53,      33,      18,       8,       6, ...
   7 |    2761,     642,     495,     340,     262,     160,     172, ...
   8 |   15767,    4567,    4099,    3007,    2692,    1832,    2171, ...
   9 |   94359,   32443,   32345,   25049,   24492,   17732,   21841, ...
  10 |  586590,  232189,  250371,  203452,  211291,  160561,  201524, ...
  11 | 3763290, 1679295, 1926145, 1635315, 1776655, 1409304, 1787218, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342861 (1324), A342863 (1243), A342864 (1432), A342865 (1234).

A342863 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1243. 0 <= k <= A028723(n + 1).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 11, 4, 2, 513, 88, 56, 32, 14, 7, 9, 0, 0, 1, 2761, 638, 543, 341, 235, 138, 173, 51, 42, 47, 34, 6, 17, 4, 0, 7, 1, 0, 2, 15767, 4478, 4600, 3119, 2658, 1710, 2180, 972, 975, 877, 771, 356, 542, 233, 184, 266, 157, 81, 130, 41, 60, 49, 16, 16, 37, 8, 9, 13, 3, 0, 10, 1, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the patterns 2134, 3421, and 4312.
First column is A005802.

Examples

			Table begins:
  n\k|       0        1        2        3        4        5        6
  ---+-------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,       1;
   5 |     103,      11,       4,       2;
   6 |     513,      88,      56,      32,      14,       7,       9, ...
   7 |    2761,     638,     543,     341,     235,     138,     173, ...
   8 |   15767,    4478,    4600,    3119,    2658,    1710,    2180, ...
   9 |   94359,   31199,   36691,   26602,   25756,   17628,   22984, ...
  10 |  586590,  218033,  284370,  218957,  231390,  166338,  221429, ...
  11 | 3763290, 1535207, 2174352, 1767837, 1994176, 1496134, 2028316, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342861 (1324), A342862 (2143), A342864 (1432), A342865 (1234).

A342864 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1432. 0 <= k <= A100354(n).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 11, 5, 0, 1, 513, 87, 68, 17, 18, 10, 0, 4, 2, 0, 1, 2761, 625, 626, 268, 274, 138, 112, 58, 51, 44, 31, 9, 15, 8, 12, 0, 5, 0, 0, 0, 3, 15767, 4378, 5038, 2781, 3060, 1697, 1817, 1036, 964, 773, 656, 450, 379, 320, 285, 148, 237, 97, 98, 55, 68, 61, 23, 30, 30, 13, 30, 0, 0, 0, 16, 0, 10, 0, 0, 1, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the patterns 2341, 3214, and 4123.
First column is A005802.

Examples

			Table begins:
  n\k|       0        1        2        3        4        5        6
  ---+-------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,       1;
   5 |     103,      11,       5,       0,       1;
   6 |     513,      87,      68,      17,      18,      10,       0, ...
   7 |    2761,     625,     626,     268,     274,     138,     112, ...
   8 |   15767,    4378,    5038,    2781,    3060,    1697,    1817, ...
   9 |   94359,   30671,   38541,   24731,   28881,   17943,   21193, ...
  10 |  586590,  216883,  289785,  205853,  251051,  170941,  211942, ...
  11 | 3763290, 1552588, 2172387, 1663964, 2096207, 1535129, 1954751, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342861 (1324), A342862 (2143), A342863 (1243), A342865 (1234).

A342865 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1234. 0 <= k <= A000332(n).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 12, 4, 0, 0, 1, 513, 102, 63, 10, 6, 12, 8, 0, 0, 5, 0, 0, 0, 0, 0, 1, 2761, 770, 665, 196, 146, 116, 142, 46, 10, 72, 32, 24, 0, 13, 0, 12, 18, 0, 0, 10, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the pattern 4321.
First column is A005802.

Examples

			Table begins:
  n\k|       0        1        2        3        4        5        6
  ---+-------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,       1;
   5 |     103,      12,       4,       0,       0,       1;
   6 |     513,     102,      63,      10,       6,      12,       8, ...
   7 |    2761,     770,     665,     196,     146,     116,     142, ...
   8 |   15767,    5545,    5982,    2477,    2148,    1204,    1782, ...
   9 |   94359,   39220,   49748,   25886,   25190,   13188,   19936, ...
  10 |  586590,  276144,  396642,  244233,  260505,  142550,  210663, ...
  11 | 3763290, 1948212, 3089010, 2167834, 2493489, 1476655, 2136586, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342860 (2413), A342861 (1324), A342862 (2143), A342863 (1243), A342864 (1432).

A217057 Number of permutations in S_n containing exactly one increasing subsequence of length 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 12, 102, 770, 5545, 39220, 276144, 1948212, 13817680, 98679990, 710108396, 5150076076, 37641647410, 277202062666, 2056218941678, 15358296210724, 115469557503753, 873561194459596, 6647760790457218, 50871527629923754, 391345137795371013
Offset: 0

Views

Author

Alois P. Heinz, Sep 25 2012

Keywords

Examples

			a(4) = 1: 1234.
a(5) = 12: 12453, 12534, 13425, 13452, 14235, 15234, 23145, 23415, 23451, 31245, 41235, 51234.
		

Crossrefs

Programs

  • Maple
    # programs can be obtained from the Nakamura & Zeilberger link.

A367022 Triangle read by rows, T(n, k) = [x^k] p(n), where p(n) = 4^n * hypergeom([1/2, -n - 1, -n], [2, 2], x).

Original entry on oeis.org

1, 4, 1, 16, 12, 2, 64, 96, 48, 5, 256, 640, 640, 200, 14, 1024, 3840, 6400, 4000, 840, 42, 4096, 21504, 53760, 56000, 23520, 3528, 132, 16384, 114688, 401408, 627200, 439040, 131712, 14784, 429, 65536, 589824, 2752512, 6021120, 6322176, 3161088, 709632, 61776, 1430
Offset: 0

Views

Author

Peter Luschny, Nov 06 2023

Keywords

Examples

			Triangle T(n, k) starts:
  [0]     1;
  [1]     4,      1;
  [2]    16,     12,       2;
  [3]    64,     96,      48,       5;
  [4]   256,    640,     640,     200,      14;
  [5]  1024,   3840,    6400,    4000,     840,      42;
  [6]  4096,  21504,   53760,   56000,   23520,    3528,    132;
  [7] 16384, 114688,  401408,  627200,  439040,  131712,  14784,   429;
  [8] 65536, 589824, 2752512, 6021120, 6322176, 3161088, 709632, 61776, 1430;
		

Crossrefs

Cf. A038845 (column 1), A128088, A005802, A246513, A001263.

Programs

  • Maple
    p := n -> 4^n*hypergeom([1/2, -n - 1, -n], [2, 2], x):
    T := (n, k) -> coeff(simplify(p(n)), x, k):
    seq(seq(T(n, k), k = 0..n), n = 0..8);
  • Mathematica
    T[n_,k_]:=4^(n-k)*Binomial[n,k]*Binomial[n+1,k]*Binomial[2*k,k]/(k+1)^2;Flatten[Table[T[n,k],{n,0,8},{k,0,n}]] (* Detlef Meya, Nov 20 2023 *)

Formula

From Detlef Meya, Nov 20 2023: (Start)
T(n, k) = 4^(n - k)*binomial(n, k)*binomial(n+1, k)*binomial(2*k, k)/(k + 1)^2.
T(n, k) = A001263(n+1, k+1)*4^(n - k)*binomial(2*k, k)/(k + 1). (End)

A128088 a(n) = Sum_{k=0..n} A000108(k)*A001263(n+1,k+1), where A000108 is the Catalan numbers and A001263 is the Narayana triangle.

Original entry on oeis.org

1, 2, 6, 24, 115, 618, 3591, 22088, 141903, 943590, 6452490, 45159480, 322305165, 2339100078, 17223121350, 128428689888, 968383277791, 7374380672718, 56655414930642, 438741242896680, 3422125459579869, 26866961380274598, 212191772351034249, 1685036376746788392
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2007

Keywords

Comments

a(n) is the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {1>2>3>4} of length 5. That is, the number of length n+1 permutations having no subsequences of length 5 in which the element in position 1 is larger than the element in position 2, which in turn is larger than the element in position 3, and that element is larger than the element in position 4. - Sergey Kitaev, Dec 13 2020

Examples

			Illustrate a(n) = Sum_{k=0..n} A000108(k)*A001263(n+1,k+1) by:
a(2) = 1*(1) + 1*(3) + 2*(1) = 6;
a(3) = 1*(1) + 1*(6) + 2*(6) + 5*(1) = 24;
a(4) = 1*(1) + 1*(10)+ 2*(20)+ 5*(10)+ 14*(1) = 115.
The Narayana triangle A001263(n+1,k+1) = C(n,k)*C(n+1,k)/(k+1) begins:
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 20, 10, 1;
1, 15, 50, 50, 15, 1; ...
		

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([1/2, -n - 1, -n], [2, 2], 4):
    seq(simplify(a(n)), n = 0..23);  # Peter Luschny, Nov 06 2023
  • Mathematica
    Table[Sum[Binomial[2*k,k]*Binomial[n,k]*Binomial[n+1,k]/(k+1)^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
    Table[HypergeometricPFQ[{1/2, -1 - n, -n}, {2, 2}, 4], {n, 0, 20}] (* Vaclav Kotesovec, May 14 2016 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(2*k,k)*binomial(n,k)*binomial(n+1,k)/(k+1)^2)}

Formula

a(n) = (n+1)*A005802(n), where A005802(n) = number of permutations in S_n with longest increasing subsequence of length <= 3.
a(n) = Sum_{k=0..n} C(2k,k)*C(n,k)*C(n+1,k)/(k+1)^2.
Recurrence: (n+2)^2*a(n) = (n+1)*(7*n+2)*a(n-1) + 3*(n-2)*(7*n-4)*a(n-2) - 27*(n-2)*(n-1)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3^(2*n+9/2)/(16*Pi*n^3). - Vaclav Kotesovec, Oct 20 2012
a(n) = hypergeom([1/2, -n - 1, -n], [2, 2], 4). - Vaclav Kotesovec, May 14 2016

A223905 Number of 4-vexillary permutations in S_n, that is, permutations whose Stanley symmetric function has at most 4 terms or at most 4 Edelman-Greene tableaux.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 717, 4824, 34629, 256689, 1935301
Offset: 0

Views

Author

Sara Billey, Apr 04 2013

Keywords

Comments

This family is characterized by a finite set of patterns.

Crossrefs

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 31 2019
Previous Showing 11-20 of 36 results. Next