cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-63 of 63 results.

A386823 Triangle read by rows: T(n,k) = numerator((n^2 - k^2)/(n^2 + k^2)), where 0 <= k < n.

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 15, 3, 7, 1, 12, 21, 8, 9, 1, 35, 4, 3, 5, 11, 1, 24, 45, 20, 33, 12, 13, 1, 63, 15, 55, 3, 39, 7, 15, 1, 40, 77, 4, 65, 28, 5, 16, 17, 1, 99, 12, 91, 21, 3, 8, 51, 9, 19, 1, 60, 117, 56, 105, 48, 85, 36, 57, 20, 21, 1, 143, 35, 15, 4, 119, 3, 95, 5, 7, 11, 23
Offset: 1

Views

Author

Stefano Spezia, Aug 04 2025

Keywords

Examples

			The triangle of the fractions begins as:
  1/1;
  1/1,   3/5;
  1/1,   4/5,  5/13;
  1/1, 15/17,   3/5,  7/25;
  1/1, 12/13, 21/29,  8/17,  9/41;
  1/1, 35/37,   4/5,   3/5,  5/13, 11/61;
  1/1, 24/25, 45/53, 20/29, 33/65, 12/37, 13/85;
  ...
		

Crossrefs

Cf. A000012 (k=0), A000290, A005408, A066830 (k=1), A069011, A094728, A386824 (denominators).

Programs

  • Mathematica
    T[n_,k_]:=Numerator[(n^2-k^2)/(n^2+k^2)]; Table[T[n,k],{n,12},{k,0,n-1}]//Flatten

Formula

T(n,n-1) = A005804(n-1).

A318120 Number of set partitions of {1,...,n} with relatively prime block sizes.

Original entry on oeis.org

1, 1, 1, 4, 11, 51, 162, 876, 3761, 20782, 109293, 678569, 4038388, 27644436, 186524145, 1379760895, 10323844183, 82864869803, 674798169662, 5832742205056, 51385856585637, 474708148273586, 4486977535287371, 44152005855084345, 444577220573083896
Offset: 0

Views

Author

Gus Wiseman, Dec 16 2018

Keywords

Examples

			The a(4) = 11 set partitions:
  {{1},{2},{3},{4}}
   {{1},{2},{3,4}}
   {{1},{2,3},{4}}
   {{1},{2,4},{3}}
   {{1,2},{3},{4}}
   {{1,3},{2},{4}}
   {{1,4},{2},{3}}
    {{1},{2,3,4}}
    {{1,2,3},{4}}
    {{1,2,4},{3}}
    {{1,3,4},{2}}
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, `if`(t<2, 1, 0),
          add(b(n-j, igcd(t, j))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 30 2019
  • Mathematica
    numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
    Table[Total[numSetPtnsOfType/@Select[IntegerPartitions[n],GCD@@#==1&]],{n,10}]
    (* Second program: *)
    b[n_, t_] := b[n, t] = If[n == 0, If[t < 2, 1, 0],
         Sum[b[n - j, GCD[t, j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    a[n_] := b[n, 0];
    a /@ Range[0, 25] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{|y| = n, GCD(y) = 1} n! / (Product_i y_i! * Product_i (y)_i!) where the sum is over all relatively prime integer partitions of n and (y)_i is the multiplicity of i in y.

A331685 Number of tree-factorizations of Heinz numbers of integer partitions of n.

Original entry on oeis.org

1, 3, 7, 23, 69, 261, 943, 3815, 15107, 63219, 262791, 1130953, 4838813, 21185125, 92593943, 411160627, 1823656199, 8186105099, 36728532951, 166310761655
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

A tree-factorization of n > 1 is either (case 1) the number n itself, or (case 2) a sequence of two or more tree-factorizations, one of each part of a weakly increasing factorization of n into factors > 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(1) = 1 through a(4) = 23 tree-factorizations:
  2  3      5          7
     4      6          9
     (2*2)  8          10
            (2*3)      12
            (2*4)      16
            (2*2*2)    (2*5)
            (2*(2*2))  (2*6)
                       (2*8)
                       (3*3)
                       (3*4)
                       (4*4)
                       (2*2*3)
                       (2*2*4)
                       (2*2*2*2)
                       (2*(2*3))
                       ((2*2)*4)
                       (2*(2*4))
                       (3*(2*2))
                       (4*(2*2))
                       (2*(2*2*2))
                       (2*2*(2*2))
                       ((2*2)*(2*2))
                       (2*(2*(2*2)))
		

Crossrefs

The orderless version is A319312.
Factorizations are A001055.
P-trees are A196545.
Twice-factorizations are A281113.
Tree-factorizations are A281118.
Enriched p-trees are A289501.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    physemi[n_]:=Prepend[Join@@Table[Tuples[physemi/@f],{f,Select[facs[n],Length[#]>1&]}],n];
    Table[Sum[Length[physemi[Times@@Prime/@m]],{m,IntegerPartitions[n]}],{n,8}]
  • PARI
    \\ here TF(n) is n terms of A281118 as vector.
    TF(n)={my(v=vector(n), w=vector(n)); w[1]=v[1]=1; for(k=2, n, w[k]=v[k]+1; forstep(j=n\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j] += w[k]^e*v[i]))); w}
    a(n)={my(v=[prod(i=1, #p, prime(p[i])) | p<-partitions(n)], tf=TF(vecmax(v))); sum(i=1, #v, tf[v[i]])} \\ Andrew Howroyd, Dec 09 2020

Formula

a(n) = Sum_i A281118(A215366(n,i)).

Extensions

a(13)-a(20) from Andrew Howroyd, Dec 09 2020
Previous Showing 61-63 of 63 results.