A217324
Number of self-inverse permutations in S_n with longest increasing subsequence of length 4.
Original entry on oeis.org
1, 4, 19, 69, 265, 929, 3356, 11626, 41117, 142206, 499836, 1734328, 6099193, 21282265, 75125770, 263906332, 936517637, 3313246237, 11827430209, 42139231729, 151339387003, 542857007499, 1961171657524, 7079621540798, 25720257983591, 93396276789196
Offset: 4
a(4) = 1: 1234.
a(5) = 4: 12354, 12435, 13245, 21345.
a(6) = 19: 123654, 124365, 125436, 125634, 126453, 132465, 132546, 143256, 145236, 153426, 163452, 213465, 213546, 214356, 321456, 341256, 423156, 523416, 623451.
-
a:= proc(n) option remember; `if`(n<4, 0, `if`(n=4, 1,
((2+n)*(30*n^5+199*n^4-374*n^3-1537*n^2-406*n+408)*a(n-1)
-4*(n-1)*(n-2)*(120*n^4+46*n^3-471*n^2+371*n+204)*a(n-3)
+(n-1)*(285*n^5-262*n^4-2755*n^3-1520*n^2+820*n-48)*a(n-2)
-48*(n-1)*(n-3)*(3*n+7)*(5*n+4)*(n-2)^2*a(n-4))/
((n-4)*(5*n-1)*(3*n+4)*(n+4)*(n+3)*(n+2))))
end:
seq(a(n), n=4..40);
-
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0 || i == 1, Function[p, h[p]*x^If[p == {}, 0, p[[1]]]][Join[l, Array[1&, n]]], Sum[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]];
a[n_] := a[n] = Coefficient[g[n, n, {}], x, 4];
Table[Print[n, " ", a[n]]; a[n], {n, 4, 40}]
(* or: *)
MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]];
a[n_] := CatalanNumber[Quotient[n+1, 2]]*CatalanNumber[Quotient[n+2, 2]] - MotzkinNumber[n];
Table[a[n], {n, 4, 40}]
(* Jean-François Alcover, Oct 27 2021, after Alois P. Heinz in A047884 and second formula *)
A217325
Number of self-inverse permutations in S_n with longest increasing subsequence of length 5.
Original entry on oeis.org
1, 5, 29, 127, 583, 2446, 10484, 43363, 181546, 748840, 3114308, 12878441, 53594473, 222761422, 930856456, 3893811380, 16365678160, 68937445765, 291656714515, 1237403762663, 5271285939671, 22524961082326, 96620152734652, 415768621923904, 1795530067804295
Offset: 5
a(5) = 1: 12345.
a(6) = 5: 123465, 123546, 124356, 132456, 213456.
-
a:= proc(n) option remember; `if`(n<5, 0, `if`(n=5, 1,
((n+3)*(166075637*n^5+3319452867*n^4+10706068615*n^3-39910302747*n^2
-182846631872*n-159926209260)*a(n-1) +(840221898216*n+133982123900
-322021480097*n^3-83890810854*n^4+12016871251*n^5+3735622433*n^6
+111397917411*n^2)*a(n-2)-(n-2)*(2142183361*n^5+66617759078*n^4
-47640468971*n^3-611402096064*n^2+15449945364*n+452645243780)*a(n-3)
-(n-2)*(n-3)*(33769818805*n^4-54918997862*n^3 -469629276839*n^2
+789889969148*n +94438295920)*a(-4+n) -4*(n-2)*(n-3)*(-4+n)*
(2060107324*n^3 -87569131518*n^2+293565842963*n -151080184425)*a(n-5)
+240*(n-2)*(n-3)*(n-5)*(168175627*n-312397451)*(-4+n)^2*a(n-6))/
(8*(13927136*n+37088781)*(n-5)*(n+6)*(n+4)*(n+3)^2)))
end:
seq(a(n), n=5..40);
A218265
Number of standard Young tableaux of n cells and height >= 5.
Original entry on oeis.org
1, 6, 36, 176, 856, 3952, 18272, 83524, 384463, 1777010, 8304636, 39254076, 188160268, 915651672, 4527595824, 22771294440, 116496899100, 606656445480, 3214574890480, 17337658462800, 95128543350576, 530998366724576, 3013524116661952, 17385349086129304
Offset: 5
-
a:= proc(n) option remember; `if`(n<13,
[0$5, 1, 6, 36, 176, 856, 3952, 18272, 83524][n+1],
((n^4-2*n^3-179*n^2+256*n+804) *a(n-1)
+(n-1)*(n^4+6*n^3-295*n^2+1108*n+100) *a(n-2)
-4*(n-1)*(n-2)*(6*n^2-83*n+67) *a(n-3)
-16*(n-11)*(n-1)*(n-3)*(n-2)^2 *a(n-4))/
((n-12)*(n-5)*(n+4)*(n+3)))
end:
seq(a(n), n=5..30);
A229068
Number of standard Young tableaux of n cells and height <= 12.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568503, 2390466, 10349340, 46204720, 211779200, 997134592, 4808141824, 23745792032, 119848119307, 618058083314, 3251373425356, 17442275104496, 95297400355320, 530067682582320, 2998503402985440
Offset: 0
Cf.
A182172,
A001405 (k=2),
A001006 (k=3),
A005817 (k=4),
A049401 (k=5),
A007579 (k=6),
A007578 (k=7),
A007580 (k=8),
A212915 (k=9),
A212916 (k=10),
A229053 (k=11).
-
RecurrenceTable[{-147456 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (12+n) a[-6+n]-110592 (-4+n) (-3+n) (-2+n) (-1+n) (29+2 n) a[-5+n]+256 (-3+n) (-2+n) (-1+n) (121272+32786 n+2343 n^2+49 n^3) a[-4+n]+128 (-2+n) (-1+n) (438597+90321 n+5391 n^2+98 n^3) a[-3+n]-16 (-1+n) (8718630+5347213 n+804616 n^2+49754 n^3+1372 n^4+14 n^5) a[-2+n]-8 (27335490+10162354 n+1206473 n^2+63328 n^3+1533 n^4+14 n^5) a[-1+n]+(11+n) (20+n) (27+n) (32+n) (35+n) (36+n) a[n]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==10, a[5]==26, a[6]==76}, a, {n, 20}]
A302093
a(n) = floor(C(n/2)*C(n/2+1)), where C = Catalan numbers (A000108).
Original entry on oeis.org
1, 1, 2, 4, 10, 25, 70, 199, 588, 1784, 5544, 17569, 56628, 185202, 613470, 2054998, 6952660, 23732911, 81662152, 283026021, 987369656, 3465222945, 12228193432, 43369190282, 154532114800, 552998717472, 1986841476000, 7164993393905, 25928281261800, 94132464529902
Offset: 0
k a(k) is prime
2 2
7 199
11 17569
17 23732911
81 102313363987695596246576033222404783284068513
619 200823128294216578246...307006792344011246479 (366 digits)
-
a108:= n -> binomial(2*n,n)/(n+1):
seq(floor(a108(n/2)*a108(n/2+1)),n=0..40); # Robert Israel, May 12 2025
-
Table[Floor[CatalanNumber[n/2] CatalanNumber[n/2 + 1]], {n, 0, 35}]
A306295
Maximal number of coalescent histories among non-matching pairs consisting of a caterpillar gene tree and a caterpillar species tree with n+2 leaves.
Original entry on oeis.org
1, 3, 10, 32, 107, 359, 1234, 4274, 15032, 53242, 190588, 686272, 2490399, 9081375, 33312770, 122692130, 453999656, 1685601038, 6282014804, 23478897364, 88026769844, 330831420218, 1246635155180, 4707414286652, 17815452662152, 67546709440004, 256595322436760
Offset: 1
For n=1, a non-matching caterpillar gene tree and species tree with n+2=3 leaves have only one coalescent history: all coalescences must take place above the root of the species tree. Hence, a(1)=1.
-
b[n_] :=
Binomial[2 n - 2, n - 1]/
n - (2 Floor[(n - 1)/2])!/(Floor[(n - 1)/2]! Floor[(n + 1)/
2]!) (2 Ceiling[(n - 1)/2])!/(Ceiling[(n - 1)/
2]! Ceiling[(n + 1)/2]!)
a[n_] := b[n+2]
Table[a[n], {n,1,30}]
A339754
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k symmetric vertices (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 0, 2, 0, 2, 3, 0, 2, 6, 6, 0, 4, 12, 16, 10, 0, 8, 24, 40, 40, 20, 0, 20, 60, 104, 120, 90, 35, 0, 50, 150, 270, 350, 330, 210, 70, 0, 140, 420, 768, 1040, 1080, 840, 448, 126, 0, 392, 1176, 2184, 3080, 3468, 3108, 2128, 1008, 252
Offset: 1
For n=5 there are 4 Dyck paths with 2 symmetric vertices: uuuuddddud, uduuuudddd, uuudddudud, ududuuuddd.
Triangle begins:
1;
0, 2;
0, 2, 3;
0, 2, 6, 6;
0, 4, 12, 16, 10;
0, 8, 24, 40, 40, 20;
0, 20, 60, 104, 120, 90, 35;
0, 50, 150, 270, 350, 330, 210, 70;
0, 140, 420, 768, 1040, 1080, 840, 448, 126;
0, 392, 1176, 2184, 3080, 3468, 3108, 2128, 1008, 252;
...
Column k=2 gives 2*
A005817(n-3) (for n>2).
-
b:= proc(x, y, v) option remember; expand(
`if`(min(y, v, x-max(y, v))<0, 0, `if`(x=0, 1, (l-> add(add(
`if`(y+i=v+j, z, 1)*b(x-1, y+i, v+j), i=l), j=l))([-1, 1]))))
end:
g:= proc(n) option remember; add(b(n, j$2), j=0..n) end:
T:= (n, k)-> coeff(g(n), z, k):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Feb 12 2021
-
b[x_, y_, v_] := b[x, y, v] = Expand[If[Min[y, v, x - Max[y, v]] < 0, 0, If[x == 0, 1, Function[l, Sum[Sum[If[y + i == v + j, z, 1]*b[x - 1, y + i, v + j], {i, l}], {j, l}]][{-1, 1}]]]];
g[n_] := g[n] = Sum[b[n, j, j], {j, 0, n}];
T[n_, k_] := Coefficient[g[n], z, k];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Feb 13 2021, after Alois P. Heinz *)
A367495
Number of up-down permutations p of [n] such that for all ii+1 differs from the number of elements p(k) between p(i+1) and p(i+2) for k>i+2.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 11, 37, 147, 684, 3611, 21345, 139794, 1004293, 7853728, 66413562, 603851552, 5874507617, 60886603188, 669797203196, 7794401498440, 95662364870740, 1234953443995817, 16728449735374081, 237245379727483160, 3515622139828164851
Offset: 0
a(0) = 1: (), the empty permutation.
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 1: 132.
a(4) = 2: 1423, 3412.
a(5) = 4: 13254, 15243, 35142, 45132.
a(6) = 11: 132645, 142635, 162534, 164523, 264513, 341625, 361524, 364512, 461523, 561423, 563412.
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
add(`if`(j=t, 0, b(o-1+j, u-j, j)), j=1..u))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..30);
A306422
Maximal number of coalescent histories among matching pairs of binary, rooted leaf-labeled gene trees and species trees with n leaves.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 138, 462, 1663
Offset: 1
A000108 and
A005817 give the numbers of coalescent histories for specific families of matching gene trees and species trees.
Comments