A259549 Triangle T(n,k) with rows of length 2n-1 filled with consecutive integers, each appearing twice except for the last term, T(n,2n-1) = n(n+1)/2.
1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 37, 37, 38, 38
Offset: 1
Examples
The irregular triangle T(n,k) starts: n/k 1 2 3 4 5 6 7 8 9 10 11 1: 1 2: 2 2 3 3: 4 4 5 5 6 4: 7 7 8 8 9 9 10 5: 11 11 12 12 13 13 14 14 15 6: 16 16 17 17 18 18 19 19 20 20 21
Links
- Craig Knecht, Micro and macro equilateral triangles.
- Craig Knecht, Wave peak and trough.
- Wikipedia, Water Retention on Mathematical Surfaces
Crossrefs
Partial sums of A071028.
Programs
-
PARI
a259549(nmax) = { /* Give the first nmax rows */ my(L=List(), t); for(n=1, nmax, t=(n^2-n+2)/2; for(k=0, n-2, listput(L, t+k); listput(L, t+k) ); listput(L, n*(n+1)/2) ); Vec(L) } a259549(6) \\ Colin Barker, Jul 04 2015
-
PARI
A259549(n,k)=(n^2-n+k+1)\2 \\ M. F. Hasler, Aug 11 2015
Formula
a(n) = (1/4)*(2*t(n) + 1 - (-1)^t(n)), where t(n) = n + floor(sqrt(n)). - Ridouane Oudra, Jun 08 2019
Extensions
More terms from Colin Barker, Jul 04 2015
Comments