cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-52 of 52 results.

A367564 Triangular array read by rows: T(n, k) = binomial(n, k) * A001333(n - k).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 17, 28, 18, 4, 1, 41, 85, 70, 30, 5, 1, 99, 246, 255, 140, 45, 6, 1, 239, 693, 861, 595, 245, 63, 7, 1, 577, 1912, 2772, 2296, 1190, 392, 84, 8, 1, 1393, 5193, 8604, 8316, 5166, 2142, 588, 108, 9, 1, 3363, 13930, 25965, 28680, 20790, 10332, 3570, 840, 135, 10, 1
Offset: 0

Views

Author

Peter Luschny, Nov 25 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0]    1;
[1]    1,    1;
[2]    3,    2,    1;
[3]    7,    9,    3,    1;
[4]   17,   28,   18,    4,    1;
[5]   41,   85,   70,   30,    5,    1;
[6]   99,  246,  255,  140,   45,    6,   1;
[7]  239,  693,  861,  595,  245,   63,   7,   1;
[8]  577, 1912, 2772, 2296, 1190,  392,  84,   8, 1;
[9] 1393, 5193, 8604, 8316, 5166, 2142, 588, 108, 9, 1;
		

Crossrefs

Cf. A001333 (column 0), A006012 (row sums), A367211.

Programs

  • Maple
    P := proc(n) option remember; ifelse(n <= 1, 1, 2*P(n - 1) + P(n - 2)) end:
    T := (n, k) -> P(n - k) * binomial(n, k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
  • Mathematica
    P[n_] := P[n] = If[n <= 1, 1, 2 P[n - 1] + P[n - 2]];
    T[n_, k_] := P[n - k] Binomial[n, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 10 2024, after Peter Luschny *)

Formula

From Werner Schulte, Nov 26 2023: (Start)
The row polynomials p(n, x) = Sum_{k=0..n} T(n, k) * x^k satisfy:
a) p'(n, x) = n * p(n-1, x) where p' is the first derivative of p;
b) p(0, x) = 1, p(1, x) = 1 + x and p(n, x) = (2+2*x) * p(n-1, x) + (1-2*x-x^2) * p(n-2, x) for n > 1.
T(n, 0) = A001333(n) for n >= 0 and T(n, k) = T(n-1, k-1) * n / k for 0 < k <= n.
G.f.: (1 - (1+x) * t) / (1 - (2+2*x) * t - (1-2*x-x^2) * t^2). (End)

A377501 a(n) = 2 + 4^(n - 1) - (2 - sqrt(2))^(n - 1) - (2 + sqrt(2))^(n - 1).

Original entry on oeis.org

1, 2, 6, 26, 122, 562, 2514, 10978, 47074, 199106, 833346, 3459458, 14268290, 58542850, 239189250, 973889026, 3954048514, 16015899650, 64745436162, 261309683714, 1053186816002, 4239883710466, 17052184465410, 68525063462914, 275180257009666, 1104408389468162
Offset: 1

Views

Author

Eric W. Weisstein, Oct 30 2024

Keywords

Comments

a(n) is also the number of edge cuts in the wheel graph on n vertices for n > 3.

Crossrefs

Cf. A158525.

Programs

  • Mathematica
    Table[2 + 4^(n - 1) - (2 - Sqrt[2])^(n - 1) - (2 + Sqrt[2])^(n - 1), {n, 26}]
    LinearRecurrence[{9, -26, 26, -8}, {1, 2, 6, 26}, 20]
    CoefficientList[Series[-(-1 + 7 x - 14 x^2 + 2 x^3)/((-1 + x) (-1 + 4 x) (1 - 4 x + 2 x^2)), {x, 0, 20}], x]

Formula

a(n) = 2 + 4^(n - 1) - (2 - sqrt(2))^(n - 1) - (2 + sqrt(2))^(n - 1) = 2+4^(n-1)-2*A006012(n-1).
a(n) = 9*a(n-1)-26*a(n-2)+26*a(n-3)-8*a(n-4).
G.f.: -x*(-1+7*x-14*x^2+2*x^3)/((-1+x)*(-1+4*x)*(1-4*x+2*x^2)).
a(n) = 2^(2*(n-1))-A158525(n) for n >= 4. - Pontus von Brömssen, Nov 06 2024
E.g.f.: exp(2*x)*(-2*cosh(sqrt(2)*x) - 2*sinh(x) + cosh(x)*(2 + sinh(x)) + sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, Nov 08 2024
Previous Showing 51-52 of 52 results.