cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A064111 Numbers k such that sopf(k) + 1 = sopf(k+1), where sopf(k) = A008472(k).

Original entry on oeis.org

2, 8, 120, 168, 175, 247, 860, 1044, 1444, 1659, 1849, 3626, 3834, 4233, 4300, 4345, 4814, 6867, 8240, 14905, 23287, 24476, 28919, 29087, 29464, 30457, 30650, 33725, 34945, 35585, 37214, 49468, 52206, 54900, 58113, 62049, 63440, 65631, 68264
Offset: 1

Views

Author

Jason Earls, Sep 08 2001

Keywords

Comments

Also k such that z(k) = z(k+1) where z(k) = k - sopf(k).
Prime factors counted without multiplicity. - Harvey P. Dale, Dec 26 2015

Examples

			sopf(8) + 1 = 3, sopf(8 + 1) = 3.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Partition[Table[Total[Transpose[FactorInteger[n]] [[1]]], {n, 2,70000}],2,1],?(#[[1]]+1==#[[2]]&),{1},Heads->False]]+1 (* _Harvey P. Dale, Dec 26 2015 *)
  • PARI
    sopf(n,s,fac,i)=fac=factor(n); for(i=1,matsize(fac)[1],s=s+fac[i,1]); return(s);
    j=[]; for(n=1,100000, if(sopf(n)+1==sopf(n+1), j=concat(j,n))); j
    
  • PARI
    z(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(n - s) }
    { n=0; zm=z(1); for (m=1, 10^9, zp=z(m + 1); if (zm==zp, write("b064111.txt", n++, " ", m); if (n==1000, break)); zm=zp ) } \\ Harry J. Smith, Sep 07 2009

A129320 a(n) = A129319(n)/A129318(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 5, 15, 2, 5, 1, 3, 11, 2, 11, 1, 5, 5, 1, 4, 4, 1, 5, 2, 16, 10, 1, 6, 13, 4, 3, 9, 1, 1, 6, 2, 26, 2, 3, 23, 4, 1, 1, 6, 2, 3, 1, 11, 2, 1, 8, 14, 28, 8, 1, 7, 1, 23, 8, 20, 7, 2
Offset: 1

Views

Author

Walter Kehowski, Apr 09 2007

Keywords

Examples

			a(6)=2 since A129319(n)/A129318(n)=30/15=2.
		

Crossrefs

A330999 Infinitary Ruth-Aaron numbers: numbers k such that A181894(k) = A181894(k+1).

Original entry on oeis.org

5, 77, 714, 948, 2431, 2491, 2996, 3450, 4293, 5405, 5560, 5885, 5959, 11124, 13869, 14587, 16932, 17080, 17346, 18468, 19551, 26642, 31931, 33019, 37925, 42250, 47544, 48635, 49240, 52554, 53192, 60048, 79248, 80837, 89979, 95709, 98119, 98644, 99163, 108458
Offset: 1

Views

Author

Amiram Eldar, Jan 05 2020

Keywords

Comments

A variation of Ruth-Aaron numbers with "Fermi-Dirac primes" (or infinitary components) instead of prime divisors.

Examples

			5 is a term since A181894(5) = A181894(6) = 5.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); s[1] = 0; s[n] := Plus @@ (Flatten @ (f @@@ FactorInteger[n])); seq ={}; s1 = 0; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n-1]]; s1 = s2, {n, 2, 10^5}]; seq

A331000 Unitary Ruth-Aaron numbers: numbers k such that A008475(k) = A008475(k+1).

Original entry on oeis.org

5, 77, 714, 948, 2491, 2996, 3450, 4293, 5405, 6669, 9125, 10807, 13869, 14587, 16932, 17346, 19511, 19967, 23323, 26642, 27104, 31931, 33019, 37925, 41124, 43616, 48635, 52554, 55499, 58077, 58695, 79248, 80837, 86088, 89979, 95709, 98644, 99163, 108458, 117467
Offset: 1

Views

Author

Amiram Eldar, Jan 05 2020

Keywords

Comments

A variation of Ruth-Aaron numbers with unitary prime-power divisors instead of prime divisors.

Examples

			5 is a term since A008475(5) = A008475(6) = 5.
		

Crossrefs

Programs

  • Mathematica
    s[1] = 0; s[n_] := Plus @@ (Power @@@ FactorInteger[n]); seq = {}; s1 = 0; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 10^5}]; seq

A063968 Numbers k such that sopf(k) = sopf(k+2), where sopf(k) = A008472(k).

Original entry on oeis.org

2, 340, 845, 950, 1340, 3724, 5694, 6102, 7657, 8991, 9331, 9709, 10323, 11388, 11390, 12460, 15870, 18912, 19778, 20882, 21715, 24732, 26978, 29052, 29632, 32428, 33596, 35028, 38178, 42718, 43068, 45750, 46102, 50396, 53251, 61408
Offset: 1

Views

Author

Jason Earls, Sep 05 2001

Keywords

Crossrefs

Programs

  • PARI
    sopf(n,s,fac,i)=fac=factor(n); for(i=1,matsize(fac)[1],s=s+fac[i,1]); return(s);
    j=[]; for(n=1,100000, if(sopf(n)==sopf(n+2),j=concat(j,n))); j
    
  • PARI
    sopf(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
    { n=0; r=sopf(1); s=sopf(2); for (m=1, 10^9, t=sopf(m + 2); if(r==t, write("b063968.txt", n++, " ", m); if (n==1000, break)); r=s; s=t ) } \\ Harry J. Smith, Sep 04 2009

A156787 Composite integers n such that 2^{n-1}=1 mod s(n), where s(n) is the sum of the distinct prime factors of n.

Original entry on oeis.org

9, 10, 25, 27, 40, 49, 81, 100, 105, 116, 121, 125, 160, 169, 243, 250, 289, 343, 361, 400, 525, 529, 561, 568, 625, 640, 729, 805, 841, 945, 961, 1000, 1001, 1018, 1045, 1105, 1309, 1331, 1369, 1596, 1600, 1681, 1729, 1849, 1856, 1881, 2001, 2187, 2197, 2205
Offset: 1

Views

Author

Florian Luca (fluca(AT)matmor.unam.mx), Feb 15 2009

Keywords

Examples

			For n=2, the second number is a(2)=10 because s(10)=2+5=7 divides 2^{10-1}-1=2^9-1=511.
		

Crossrefs

Cf. A006145.

Programs

  • Maple
    B := {}; for n from 2 to 1000 do A := (numtheory[factorset])(n); b := add(a, `in`(a, A)); if `and`(b < n, `mod`(2^(n-1), b) = 1) then B := [op(B), n] else end if end do; print(c := 2);
  • Mathematica
    Select[Range[2, 2300], CompositeQ[#] && PowerMod[2, #-1, Total[First /@ FactorInteger[#]]] == 1 &] (* Amiram Eldar, Nov 20 2019 *)
  • PARI
    is(n)=if(isprime(n),0,my(f=factor(n)[,1]);Mod(2, sum(i=1, #f, f[i]))^(n-1)==1) \\ Charles R Greathouse IV, Feb 01 2013

Formula

n log n << a(n) << n^(1+e) for any e > 0. See Luca & Tipu for more precise results. - Charles R Greathouse IV, Feb 01 2013

Extensions

More terms from Amiram Eldar, Nov 20 2019

A178214 Numbers in A039753 with neither of their Ruth-Aaron pairs squarefree.

Original entry on oeis.org

7129199, 9867275, 18918704, 43009524, 43882488, 45828324, 126511280, 132082191, 150786063, 252625743, 285816464, 303792200, 313887275, 330130475, 336945392, 337795524, 361652075, 380035664, 480297824, 579423924, 647037215, 650012724, 756098624, 986677500, 1000308015, 1001438136, 1139325668, 1140314075, 1205629524, 1315277147
Offset: 1

Views

Author

Hans Havermann, Dec 19 2010

Keywords

Examples

			7129199 (7*11^2*19*443, with 7129200 = 2^4*3*5^2*13*457) is a member of both A006145 (7+11+19+443 = 2+3+5+13+457) and A039752 (7+11+11+19+443 = 2+2+2+2+3+5+5+13+457) but neither 7129199 nor 7129200 is squarefree, so 7129199 is a member of this sequence.
		

Crossrefs

A192283 Sum of prime anti-divisors of n = sum of prime anti-divisors of n+1 with n > 1.

Original entry on oeis.org

237, 4019, 7401, 14178, 14339, 18435, 19146, 21405, 54562, 56348, 60125, 82967, 98447, 99347, 109157, 113391, 125333, 132096, 132386, 145063, 173399, 195213, 260288, 278271, 343848, 384169, 396813, 434375, 460758, 474105, 477707, 528845, 550400, 587211
Offset: 1

Views

Author

Paolo P. Lava, Jul 27 2011

Keywords

Comments

Like A006145 but using anti-divisors.

Examples

			Anti-divisors of 7401 are 2, 6, 19, 41, 113, 131, 361, 779, 4934. The primes are 2, 19, 41, 113 and 131 whose sum is 306.
Anti-divisors of 7402 are 3, 4, 5, 7, 9, 15, 21, 35, 45, 47, 63, 105, 113, 131, 141, 235, 315, 329, 423, 705, 987, 1645, 2115, 2961, 4935. The primes are 3, 5, 7, 47, 113 and 131 whose sum is 306.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(n)
    local a,b,i,k;
    b:=2;
    for i from 4 to n do
      a:=0;
      for k from 2 to i-1 do
        if abs((i mod k)- k/2) < 1 then if isprime(k) then a:=a+k; fi; fi;
      od;
      if a=b then print(i-1); fi;
      b:=a;
    od;
    end:
    P(200000);

A193314 The smallest k such that the product k*(k+1) is divisible by the first n primes and no others.

Original entry on oeis.org

1, 2, 5, 14, 384, 1715, 714, 633555
Offset: 1

Views

Author

Robert G. Wilson v, Aug 17 2011

Keywords

Comments

a(9)-a(21) do not exist. It seems unlikely that a(n) exists for larger n. [Charles R Greathouse IV, Aug 18 2011]
If a term beyond a(8) exists, it is larger than 2.29*10^25. - Giovanni Resta, Nov 30 2019

Examples

			n  smallest k   k*(k+1) prime factorization
1  1            2
2  2            2*3
3  5            2*3*5
4  14           2*3*5*7
5  384          2^7*3*5*7*11
6  1715         2^2*3*7^3*11*13
7  714          2*3*5*7*11*13*17
8  633555       2^2*3^3*5*7*11^3*13*17*19^2
		

Crossrefs

Programs

  • Haskell
    a193314 n = head [k | k <- [1..], let kk' = a002378 k,
                          mod kk' (a002110 n) == 0, a006530 kk' == a000040 n]
    -- Reinhard Zumkeller, Jun 14 2015
  • Mathematica
    f[n_] := Block[{k = 1, p = Fold[ Times, 1, Prime@ Range@ n], tst = Prime@ Range@ n},While[ First@ Transpose@ FactorInteger[ k*p]!=tst || IntegerQ@ Sqrt[ 4k*p+1], k++]; Floor@ Sqrt[k*p]]; Array[f, 8]
    (* the search for a(9), I also used *) lst = {}; p = Prime@ Range@ 9; Do[ q = {a, b, c, d, e, f, g, h, i}; If[ IntegerQ[ Sqrt[4Times @@ (p^q) + 1]], r = Floor@ Sqrt@ Times @@ (p^q); Print@ r; AppendTo[lst, r]], {i, 9}, {h, 9}, {g, 9}, {f, 10}, {e, 11}, {d, 14}, {c, 16}, {b, 24}, {a, 8}]
  • PARI
    a(n)={
      my(v=[Mod(0,1)],u,P=1,t,g,k);
      forprime(p=2,prime(n),
        P*=p;
        u=List();
        for(i=1,#v,
          listput(u,chinese(v[i],Mod(-1,p)));
          listput(u,chinese(v[i],Mod(0,p)))
        );
        v=0;v=Vec(u)
      );
      v=vecsort(lift(v));
      while(1,
        for(i=1,#v,
          t=(v[i]+k)*(v[i]+k+1)/P;
          if(!t,next);
          while((g=gcd(P,t))>1, t/=g);
            if (t==1, return(v[i]+k))
        );
        k += P
      )
    }; \\ Charles R Greathouse IV, Aug 18 2011
    

A237929 Numbers n such that (i) the sum of prime divisors of n (with repetition) is one less than the sum of prime divisors (with repetition) of n+1, and (ii) n and n+1 have the same number of prime divisors (with repetition).

Original entry on oeis.org

2, 9, 98, 170, 1274, 4233, 4345, 7105, 7625, 14905, 21385, 30457, 34945, 66585, 69874, 77314, 82946, 98841, 175354, 177122, 233090, 236282, 238017, 263145, 265225, 295274, 298082, 322234, 335793, 336106
Offset: 1

Views

Author

Abhiram R Devesh, Feb 16 2014

Keywords

Comments

The first term a(1)=2 is the only prime number in this sequence.

Examples

			For n=98: prime factors = 2,7,7; sum of prime factors = 16; number of prime divisors = 3
For n+1=99: prime factors = 3,3,11; sum of prime factors = 17; number of prime divisors=3.
		

Crossrefs

Cf. A001414, A006145 Ruth-Aaron numbers (1): sum of prime divisors of n = sum of prime divisors of n+1.
Cf. A228126 Sum of prime divisors of n (with repetition) is one less than the sum of prime divisors (with repetition) of n+1.
Cf. A045920 Numbers n such that factorizations of n and n+1 have same number of primes (including multiplicities).

Programs

  • Mathematica
    Select[Partition[Table[{n,PrimeOmega[n],Total[Times@@@FactorInteger[n]]},{n,34*10^4}],2,1],#[[1,2]]==#[[2,2]]&&#[[1,3]]+1==#[[2,3]]&][[;;,1,1]] (* Harvey P. Dale, May 03 2024 *)
  • Python
    from sympy import primeomega
    def is_A237929(n): return A001414(n) == A001414(n+1)-1 and primeomega(n) == primeomega(n+1) # David Radcliffe, Aug 08 2025
Previous Showing 11-20 of 31 results. Next