A328377
a(n) is the number of "generalized signotopes", i.e., mappings X:{{1..n} choose 3}->{+,-} such that for any four indices a < b < c < d, the sequence X(a,b,c), X(a,b,d), X(a,c,d), X(b,c,d) changes its sign at most twice (equivalently +-+- and -+-+ are forbidden).
Original entry on oeis.org
2, 14, 544, 173128, 630988832, 35355434970848
Offset: 3
- D. Knuth, Axioms and Hulls, Springer, 1992, 9-11.
- M. Balko, R. Fulek, and J. Kynčl, Crossing Numbers and Combinatorial Characterization of Monotone Drawings of K_n, Discrete & Computational Geometry, Volume 53, Issue 1, 2015, Pages 107-143.
- H. Bergold, S. Felsner, M. Scheucher, F. Schröder, and R. Steiner, Topological Drawings meet Classical Theorems from Convex Geometry, Discrete & Computational Geometry, Springer, 2022.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- Manfred Scheucher, C-program for computing the first terms
A351383
Number of tilings of the d-dimensional zonotope constructed from d+4 vectors.
Original entry on oeis.org
16, 120, 908, 7686, 78032, 1000488, 16930560, 393454160, 12954016496, 613773463394
Offset: 0
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
- G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
A351384
Number of tilings of the d-dimensional zonotope constructed from d+5 vectors.
Original entry on oeis.org
32, 720, 24698, 1681104, 295118262, 183886016052
Offset: 0
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
- G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
A060570
Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=2 and D varies.
Original entry on oeis.org
0, 1, 8, 100, 2144, 80360
Offset: 2
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
A320944
a(n) is the number of perimeter tiles among all rhombic tilings of the 2n-gon.
Original entry on oeis.org
1, 6, 24, 200, 3216
Offset: 2
a(4) = 24 because among the eight rhombic tilings of the octagon, 24 perimeter rhombi appear.
A320945
a(n) is the number of top-perimeter tiles among all rhombic tilings of the 2n-gon.
Original entry on oeis.org
1, 1, 3, 20, 268
Offset: 2
a(4) = 3 because among the eight rhombic tilings of the octagon, 3 top-perimeter rhombi appear.
A320946
a(n) is the number of left-perimeter tiles among all rhombic tilings of the 2n-gon.
Original entry on oeis.org
1, 2, 9, 80, 1340
Offset: 2
a(4) = 9 because among the eight rhombic tilings of the octagon, 9 left-perimeter rhombi appear.
A060597
Number of tilings of the 6-dimensional zonotope constructed from D vectors.
Original entry on oeis.org
1, 2, 16, 1646, 16930560, 665354510109750
Offset: 6
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001
For any d, the only possible tile for Z(d,d) is Z(d,d) itself, therefore the first term of the series is 1. It is well known that there are always two d-tilings of Z(d+1,d), therefore the second term is 2. More examples are available on my web page.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46 Second Edition, Cambridge University Press, 1999.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
- Manfred Scheucher, C++ program for enumeration.
- G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
A060598
Number of tilings of the 7-dimensional zonotope constructed from D vectors.
Original entry on oeis.org
1, 2, 18, 3564, 393454160, 24410990062379593896
Offset: 7
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001
For any d, the only possible tile for Z(d,d) is Z(d,d) itself, therefore the first term of the series is 1. It is well known that there are always two d-tilings of Z(d+1,d), therefore the second term is 2. More examples are available on my web page.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46 Second Edition, Cambridge University Press, 1999.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
- Manfred Scheucher, C++ program for enumeration.
- G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
A060599
Number of tilings of the 5-dimensional zonotope constructed from D vectors.
Original entry on oeis.org
1, 2, 14, 752, 1000488, 183886016052, 58898534395717170440
Offset: 5
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001
For any d, the only possible tile for Z(d,d) is Z(d,d) itself, therefore the first term of the series is 1. It is well known that there are always two d-tilings of Z(d+1,d), therefore the second term is 2. More examples are available on my web page.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46 Second Edition, Cambridge University Press, 1999.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
- Manfred Scheucher, C program for enumeration.
- G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
Comments