cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 115 results. Next

A341872 Coefficients of the series whose 72nd power equals E_2(x)^3/E_6(x), where E_2(x) and E_6(x) are the Eisenstein series A006352 and A013973.

Original entry on oeis.org

1, 6, 1998, 722484, 291762942, 125454173544, 56146411655460, 25832836404319152, 12128921727745915062, 5783583949613172902394, 2791762868052719757442008, 1360988846025232489401029220, 668925190887642335984231235348, 331039288912491308442251418152952
Offset: 0

Views

Author

Peter Bala, Feb 22 2021

Keywords

Comments

It is easy to see that E_2(x)^3/E_6(x) == 1 - 72*Sum_{k >= 1} (k - 7*k^5)*x^k/(1 - x^k) (mod 432), and also that the integer k - 7*k^5 is always divisible by 6. Hence, E_2(x)^3/E_6(x) == 1 (mod 432). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)^2/E_6(x))^(1/72) = 1 + 6*x + 1998*x^2 + 722484*x^3 + 291762942* x^4 + ... has integer coefficients.

Crossrefs

Programs

  • Maple
    E(2,x) := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):
    E(6,x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20):
    with(gfun): series((E(2,x)^3/E(6,x))^(1/72), x, 20):
    seriestolist(%);

Formula

a(n) ~ c * exp(2*Pi*n) / n^(71/72), where c = 0.013960369132490470055158573616810629626490780934389076244815126342923645628... - Vaclav Kotesovec, Mar 08 2021

A341873 Coefficients of the series whose 24th power equals E_2(x)^5/E_10(x), where E_2(x) and E_10(x) are the Eisenstein series A006352 and A013974.

Original entry on oeis.org

1, 6, 7038, 2002644, 922569342, 380737463400, 175255606306116, 80315525064955440, 38028486993289854966, 18171889608389845598586, 8807723964899085718419480, 4305311468773791666900669828, 2122088430918938935321961736084
Offset: 0

Views

Author

Peter Bala, Feb 23 2021

Keywords

Comments

It is easy to see that E_2(x)^5/E_10(x) == 1 - 24*Sum_{k >= 1} (5*k - 11*k^9)*x^k/(1 - x^k) (mod 144), and also that the integer 5*k - 11*k^9 is always divisible by 6. Hence, E_2(x)^5/E_10(x) == 1 (mod 144). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)^5/E_10(x))^(1/24) = 1 + 6*x + 7038*x^2 + 2002644*x^3 + 922569342*x^4 + ... has integer coefficients.

Crossrefs

Programs

  • Maple
    E(2,x)  := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):
    E(10,x) := 1 - 264*add(k^9*x^k/(1-x^k), k = 1..20):
    with(gfun): series((E(2,x)^5/E(10,x))^(1/24), x, 20):
    seriestolist(%);

A386814 Coefficients in q-expansion of E_2^4 * E_6, where E_2 and E_6 are respectively the Eisenstein series A006352 and A013973.

Original entry on oeis.org

1, -600, 34920, -157920, -23913240, 297457776, 3581091360, -13666238400, -458367407640, -4230394757880, -25457298127632, -118465178148000, -459399324219360, -1550209298287440, -4682236500918720, -12910757263315776, -32979872278342680, -78921341989665840, -178491991660958520
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 03 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    CoefficientList[Series[E2[x]^4*E6[x], {x, 0, terms}], x]

A386815 Coefficients in q-expansion of E_2^4 * E_4^2, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.

Original entry on oeis.org

1, 384, 19008, -3408384, 86384832, 390216960, -20773815552, -154767455232, 1360271378880, 30429758560128, 278226995437440, 1749537534970368, 8664534035259648, 36062711146189056, 131104383085776384, 427185615341306880, 1270776436150340544, 3499300888293305088, 9016032242401655616
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 03 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    CoefficientList[Series[E2[x]^4*E4[x]^2, {x, 0, 20}], x]

A386816 Coefficients in q-expansion of E_2^2 * E_4^3, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.

Original entry on oeis.org

1, 672, 145152, 8663424, -337036224, -6505531200, 40579467264, 1996981485312, 25931378854080, 210242562994464, 1273050737441280, 6245511315490944, 26057670474216192, 95466371280176064, 314217417062264832, 945050326572360960, 2631525623493208512, 6854684254893824832
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 03 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    CoefficientList[Series[E2[x]^2*E4[x]^3, {x, 0, 20}], x]

A386817 Coefficients in q-expansion of E_2^3 * E_4 * E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

1, -336, -114912, 4151616, 100931712, -2848456800, -37865826432, 222362076288, 7928555745600, 86986313152368, 620751040620480, 3392046804500928, 15293330001535488, 59435665658243616, 204976008706800384, 640351567531186560, 1840291945275505344, 4923361835292283488
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 03 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    CoefficientList[Series[E2[x]^3*E4[x]*E6[x], {x, 0, 20}], x]

A386818 Coefficients in q-expansion of E_2^2 * E_6^2, where E_2 and E_6 are respectively the Eisenstein series A006352 and A013973.

Original entry on oeis.org

1, -1056, 269568, 5490816, -301315008, -6705063360, 41022885888, 1997915006208, 25923296790720, 210257663162208, 1273067731422720, 6245405396604288, 26057761857270528, 95466552284986176, 314217210391363584, 945049912933328640, 2631525397984618944, 6854687219510589888
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 03 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    CoefficientList[Series[E2[x]^2*E6[x]^2, {x, 0, 20}], x]

A143278 Convolution of A006352 and A010815.

Original entry on oeis.org

1, -25, -49, 0, 0, 121, 0, 169, 0, 0, 0, 0, -289, 0, 0, -361, 0, 0, 0, 0, 0, 0, 529, 0, 0, 0, 625, 0, 0, 0, 0, 0, 0, 0, 0, -841, 0, 0, 0, 0, -961, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1225, 0, 0, 0, 0, 0, 1369, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1681, 0, 0, 0, 0, 0, 0, -1849, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 04 2008

Keywords

Examples

			q - 25*q^25 - 49*q^49 + 121*q^121 + 169*q^169 - 289*q^289 - 361*q^361 + ...
		

References

  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 188

Programs

  • PARI
    {a(n) = local(m); if(issquare(n = 24*n+1, &m), n * kronecker(12, m))}

Formula

Expansion of product of f(-q) * P(q) where f(), P() are Ramanujan series.
G.f.: Sum_{k} (-1)^k * (6*k - 1)^2 * x^(k * (3*k - 1) / 2).
G.f.: (Sum_{k} (-1)^k * x^(k * (3*k - 1) / 2)) * (1 - 24 * Sum_{k>0} k * x^k / (1 -x^k)).

A282017 Coefficients in q-expansion of (E_4 + E_2^2)/2, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009, respectively.

Original entry on oeis.org

1, 96, 1296, 4992, 13488, 25920, 50112, 74496, 123120, 164832, 246240, 300672, 442176, 501312, 694656, 794880, 1052016, 1135296, 1534032, 1591680, 2086560, 2214912, 2763072, 2840832, 3723840, 3668640, 4590432, 4750080, 5801088, 5728320, 7309440, 7007232, 8697456, 8722944, 10349856, 10160640
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2017

Keywords

Crossrefs

Cf. A004009 and A006352.

Programs

  • Maple
    with(numtheory); M:=100;
    E := proc(k) local n, t1; global M;
    t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
    series(t1, q, M+1); end;
    e2:=E(2); e4:=E(4); e6:=E(6);
    series((e2^2+e4)/2,q,M+1);
    seriestolist(%);

A341842 Coefficients of the series whose 12th power equals E_2*E_4, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009.

Original entry on oeis.org

1, 18, -2088, 301296, -50784174, 9174627360, -1734603719472, 338286925650240, -67486440186470016, 13697820033167444178, -2818359890320927630320, 586296297186462310481424, -123077156275866375661524864, 26034142700316716015964656544
Offset: 0

Views

Author

Peter Bala, Feb 21 2021

Keywords

Comments

The g.f. is the 12th root of the g.f. of A282019.
It is easy to see that E_2(x)*E_4(x) == 1 - 24*Sum_{k >= 1} (k - 10*k^3)*x^k/(1 - x^k) (mod 72), and also that the integer k - 10*k^3 is always divisible by 3. Hence, E_2(x)*E_4(x) == 1 (mod 72). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)*E_4(x))^(1/12) = 1 + 18*x - 2088*x^2 + 301296*x^3 - 50784174*x^4 + ... has integer coefficients.

Crossrefs

Programs

  • Maple
    E(2,x) := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):
    E(4,x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):
    with(gfun): series((E(2,x)*E(4,x))^(1/12), x, 20):
    seriestolist(%);
Previous Showing 41-50 of 115 results. Next