A373424
Array read by ascending antidiagonals: T(n, k) = [x^k] cf(n) where cf(n) is the continued fraction (-1)^n/(~x - 1/(~x - ... 1/(~x - 1)))...) and where '~' is '-' if n is even, and '+' if n is odd, and x appears n times in the expression.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 5, 1, 0, 1, 5, 10, 14, 8, 1, 0, 1, 6, 15, 30, 31, 13, 1, 0, 1, 7, 21, 55, 85, 70, 21, 1, 0, 1, 8, 28, 91, 190, 246, 157, 34, 1, 0, 1, 9, 36, 140, 371, 671, 707, 353, 55, 1, 0, 1, 10, 45, 204, 658, 1547, 2353, 2037, 793, 89, 1, 0
Offset: 0
Generating functions of the rows:
gf0 = 1;
gf1 = -1/( x-1);
gf2 = 1/(-x-1/(-x-1));
gf3 = -1/( x-1/( x-1/( x-1)));
gf4 = 1/(-x-1/(-x-1/(-x-1/(-x-1))));
gf5 = -1/( x-1/( x-1/( x-1/( x-1/( x-1)))));
gf6 = 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1))))));
...
Array A(n, k) starts:
[0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007
[1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[2] 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... A000045
[3] 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, ... A006356
[4] 1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, ... A006357
[5] 1, 5, 15, 55, 190, 671, 2353, 8272, 29056, 102091, ... A006358
[6] 1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, ... A006359
A000027,A000330, A085461, A244881, ...
A000217, A006322, A108675, ...
.
Triangle T(n, k) = A(n - k, k) starts:
[0] 1;
[1] 1, 0;
[2] 1, 1, 0;
[3] 1, 2, 1, 0;
[4] 1, 3, 3, 1, 0;
[5] 1, 4, 6, 5, 1, 0;
[6] 1, 5, 10, 14, 8, 1, 0;
-
row := proc(n, len) local x, a, j, ser; if irem(n, 2) = 1 then
a := x - 1; for j from 1 to n do a := x - 1 / a od: a := a - x; else
a := -x - 1; for j from 1 to n do a := -x - 1 / a od: a := -a - x;
fi; ser := series(a, x, len + 2); seq(coeff(ser, x, j), j = 0..len) end:
A := (n, k) -> row(n, 12)[k+1]: # array form
T := (n, k) -> row(n - k, k+1)[k+1]: # triangular form
-
def Arow(n, len):
R. = PowerSeriesRing(ZZ, len)
if n == 0: return [1] + [0]*(len - 1)
x = -x if n % 2 else x
a = x + 1
for _ in range(n):
a = x - 1 / a
a = x - a if n % 2 else a - x
return a.list()
for n in range(7): print(Arow(n, 10))
A095310
a(n+3) = 2*a(n+2) + 3*(n+1) - a(n).
Original entry on oeis.org
1, 5, 12, 38, 107, 316, 915, 2671, 7771, 22640, 65922, 191993, 559112, 1628281, 4741905, 13809541, 40216516, 117119750, 341079507, 993301748, 2892722267, 8424270271, 24533405595, 71446899736, 208069745986, 605946785585
Offset: 1
a(6) = 316 = 2*107 + 3*38 - 12.
a(5) = 107 since M^5 * [1 0 0] = [107 q 38].
-
a[n_] := (MatrixPower[{{1, 1, 1}, {3, 1, 0}, {1, 0, 0}}, n].{{1}, {0}, {0}})[[1, 1]]; Table[ a[n], {n, 27}] (* Robert G. Wilson v, Jun 05 2004 *)
LinearRecurrence[{2,3,-1},{1,5,12},30] (* Harvey P. Dale, Jan 25 2014 *)
A370377
a(n) is the number of symmetrical linear hydrocarbon chains with n C-C bonds.
Original entry on oeis.org
1, 3, 2, 6, 5, 14, 11, 31, 25, 70, 56, 157, 126, 353, 283, 793, 636, 1782, 1429, 4004, 3211, 8997, 7215, 20216, 16212, 45425, 36428, 102069, 81853, 229347, 183922, 515338, 413269, 1157954, 928607, 2601899, 2086561, 5846414, 4688460, 13136773, 10534874
Offset: 0
For n = 1: a(1) = A006356(1) = 3
CH3-CH3, CH2=CH2, CH≡CH
For n = 3: a(3) = A006356(2) = 6
CH3-CH2-CH2-CH3, CH3-CH=CH-CH3, CH3-C≡C-CH3, CH2=CH-CH=CH2, CH≡C-C≡CH, CH2=C=C=CH2
For n = 4: a(4) = A006356(2) - A006356(0) = 6 - 1 = 5
CH3-CH2-CH2-CH2-CH3, CH3-CH=C=CH-CH3, CH2=CH-CH2-CH=CH2, CH≡C-CH2-C≡CH, CH2=C=C=C=CH2
-
LinearRecurrence[{0, 2, 0, 1, 0, -1}, {1, 3, 2, 6, 5, 14}, 50] (* Paolo Xausa, Feb 22 2024 *)
-
Vec(O(x^55)+(1+3*x-x^5)/(1-2*x^2-x^4+x^6)) \\ Joerg Arndt, Feb 18 2024
-
a = [1, 3, 2, 6, 5, 14]
for i in range(30):
a.append(2*a[-2]+a[-4]-a[-6])
print(a)
A373567
Expansion of x + 1/(-x - 1/(-x - 1/(-x + 1))).
Original entry on oeis.org
1, 4, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209, 19181424995, 43100270734, 96845429254
Offset: 0
- L. Carlitz and R. Scoville, Up-down sequences, Duke Math. J. (39) (1972), 583-598.
- Sela Fried, A formula for the number of up-down words, arXiv:2503.02005 [math.CO], 2025.
- Emma L. L. Gao, Sergey Kitaev, and Philip B. Zhang, Pattern-avoiding alternating words, arXiv:1505.04078 [math.CO], 2015.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1).
-
CoefficientList[Series[x + 1/(-x - 1/(-x - 1/(-x + 1))), {x, 0, 31}], x] (* Michael De Vlieger, Jun 10 2024 *)
A006363
Number of antichains (or order ideals) in the poset B_4 X [n]; or size of the distributive lattice J(B_4 X [n]).
Original entry on oeis.org
1, 168, 7581, 160948, 2068224, 18561984, 127234008, 706987164, 3320153661, 13583619496, 49530070161, 163806121656, 498180781144, 1408758106368, 3737505070344, 9372218674824, 22351423903953, 50960797533096, 111574385244253, 235475590500876, 480631725411720, 951504952784320, 1831615165328400, 3435931869872580
Offset: 0
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, page 256, Proposition 3.5.1.
-
p = Subsets[Range[4]];
f[list1_, list2_] := If[ContainsAll[list2, list1], 1, 0]; \[Zeta] = Table[Table[f[p[[i]], p[[j]]], {j, 1, 16}], {i, 1, 16}]; JB4 =
Complement[Subsets[Range[16]],Level[Table[Select[Subsets[Range[16]],MemberQ[#, i] && !ContainsAll[Level[Position[\[Zeta][[All, i]], 1], {2}]][#] &], {i, 2,16}], {2}] // DeleteDuplicates]; \[Zeta]JB4 =Table[Table[f[JB4[[i]], JB4[[j]]], {j, 1, 168}], {i, 1,168}]; \[CapitalOmega][n_] := Expand[InterpolatingPolynomial[
Table[{k, MatrixPower[\[Zeta]JB4, k][[1, 168]]}, {k, 1, 17}],n]]; Table[\[CapitalOmega][n], {n, 1, 30}] (* Geoffrey Critzer, Jan 15 2021 *)
A120771
Expansion of ( 1-x^3+x^4+x^5-x^8 ) / ( 1-2*x^3-x^6+x^9 ).
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 3, 2, 1, 6, 5, 3, 14, 11, 6, 31, 25, 14, 70, 56, 31, 157, 126, 70, 353, 283, 157, 793, 636, 353, 1782, 1429, 793, 4004, 3211, 1782, 8997, 7215, 4004, 20216, 16212, 8997, 45425, 36428, 20216, 102069, 81853, 45425, 229347, 183922, 102069, 515338, 413269, 229347, 1157954, 928607, 515338
Offset: 0
-
CoefficientList[Series[(1-x^3+x^4+x^5-x^8)/(1-2*x^3-x^6+x^9),{x,0,60}],x] (* or *) LinearRecurrence[{0,0,2,0,0,1,0,0,-1},{1,0,0,1,1,1,3,2,1},60] (* Harvey P. Dale, Feb 19 2016 *)
Comments