cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-57 of 57 results.

A373424 Array read by ascending antidiagonals: T(n, k) = [x^k] cf(n) where cf(n) is the continued fraction (-1)^n/(~x - 1/(~x - ... 1/(~x - 1)))...) and where '~' is '-' if n is even, and '+' if n is odd, and x appears n times in the expression.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 5, 1, 0, 1, 5, 10, 14, 8, 1, 0, 1, 6, 15, 30, 31, 13, 1, 0, 1, 7, 21, 55, 85, 70, 21, 1, 0, 1, 8, 28, 91, 190, 246, 157, 34, 1, 0, 1, 9, 36, 140, 371, 671, 707, 353, 55, 1, 0, 1, 10, 45, 204, 658, 1547, 2353, 2037, 793, 89, 1, 0
Offset: 0

Views

Author

Peter Luschny, Jun 09 2024

Keywords

Comments

A variant of both A050446 and A050447 which are the main entries. Differs in indexing and adds a first row to the array resp. a diagonal to the triangle.

Examples

			Generating functions of the rows:
   gf0 =  1;
   gf1 = -1/( x-1);
   gf2 =  1/(-x-1/(-x-1));
   gf3 = -1/( x-1/( x-1/( x-1)));
   gf4 =  1/(-x-1/(-x-1/(-x-1/(-x-1))));
   gf5 = -1/( x-1/( x-1/( x-1/( x-1/( x-1)))));
   gf6 =  1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1))))));
   ...
Array A(n, k) starts:
  [0] 1, 0,  0,  0,   0,    0,    0,     0,      0,      0, ...  A000007
  [1] 1, 1,  1,  1,   1,    1,    1,     1,      1,      1, ...  A000012
  [2] 1, 2,  3,  5,   8,   13,   21,    34,     55,     89, ...  A000045
  [3] 1, 3,  6, 14,  31,   70,  157,   353,    793,   1782, ...  A006356
  [4] 1, 4, 10, 30,  85,  246,  707,  2037,   5864,  16886, ...  A006357
  [5] 1, 5, 15, 55, 190,  671, 2353,  8272,  29056, 102091, ...  A006358
  [6] 1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, ...  A006359
   A000027,A000330,   A085461,     A244881, ...
       A000217, A006322,    A108675, ...
.
Triangle T(n, k) = A(n - k, k) starts:
  [0] 1;
  [1] 1,  0;
  [2] 1,  1,  0;
  [3] 1,  2,  1,  0;
  [4] 1,  3,  3,  1,  0;
  [5] 1,  4,  6,  5,  1,  0;
  [6] 1,  5, 10, 14,  8,  1, 0;
		

Crossrefs

Cf. A050446, A050447, A276313 (main diagonal), A373353 (row sums of triangle).
Cf. A373423.

Programs

  • Maple
    row := proc(n, len) local x, a, j, ser; if irem(n, 2) = 1 then
    a :=  x - 1; for j from 1 to n do a :=  x - 1 / a od: a :=  a - x; else
    a := -x - 1; for j from 1 to n do a := -x - 1 / a od: a := -a - x;
    fi; ser := series(a, x, len + 2); seq(coeff(ser, x, j), j = 0..len) end:
    A := (n, k) -> row(n, 12)[k+1]:      # array form
    T := (n, k) -> row(n - k, k+1)[k+1]: # triangular form
  • SageMath
    def Arow(n, len):
        R. = PowerSeriesRing(ZZ, len)
        if n == 0: return [1] + [0]*(len - 1)
        x = -x if n % 2 else x
        a = x + 1
        for _ in range(n):
            a = x - 1 / a
        a = x - a if n % 2 else a - x
        return a.list()
    for n in range(7): print(Arow(n, 10))

A095310 a(n+3) = 2*a(n+2) + 3*(n+1) - a(n).

Original entry on oeis.org

1, 5, 12, 38, 107, 316, 915, 2671, 7771, 22640, 65922, 191993, 559112, 1628281, 4741905, 13809541, 40216516, 117119750, 341079507, 993301748, 2892722267, 8424270271, 24533405595, 71446899736, 208069745986, 605946785585
Offset: 1

Views

Author

Gary W. Adamson, Jun 02 2004

Keywords

Comments

Let M = the 3 X 3 matrix [1 1 1 / 3 1 0 / 1 0 0], then M^n * [1 0 0] = [a(n) q a(n-1)] where q is another sequence with the same recursion rule.

Examples

			a(6) = 316 = 2*107 + 3*38 - 12.
a(5) = 107 since M^5 * [1 0 0] = [107 q 38].
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (MatrixPower[{{1, 1, 1}, {3, 1, 0}, {1, 0, 0}}, n].{{1}, {0}, {0}})[[1, 1]]; Table[ a[n], {n, 27}] (* Robert G. Wilson v, Jun 05 2004 *)
    LinearRecurrence[{2,3,-1},{1,5,12},30] (* Harvey P. Dale, Jan 25 2014 *)

Formula

G.f.: (-x^2+3*x+1)/(x^3-3*x^2-2*x+1). - Harvey P. Dale, Jan 25 2014

Extensions

Corrected and extended by Robert G. Wilson v, Jun 05 2004
Edited by N. J. A. Sloane, Jun 07 2004

A370377 a(n) is the number of symmetrical linear hydrocarbon chains with n C-C bonds.

Original entry on oeis.org

1, 3, 2, 6, 5, 14, 11, 31, 25, 70, 56, 157, 126, 353, 283, 793, 636, 1782, 1429, 4004, 3211, 8997, 7215, 20216, 16212, 45425, 36428, 102069, 81853, 229347, 183922, 515338, 413269, 1157954, 928607, 2601899, 2086561, 5846414, 4688460, 13136773, 10534874
Offset: 0

Views

Author

Tomasz Dziekanski, Feb 18 2024

Keywords

Examples

			For n = 1: a(1) = A006356(1) = 3
 CH3-CH3, CH2=CH2, CH≡CH
For n = 3: a(3) = A006356(2) = 6
 CH3-CH2-CH2-CH3, CH3-CH=CH-CH3, CH3-C≡C-CH3, CH2=CH-CH=CH2, CH≡C-C≡CH, CH2=C=C=CH2
For n = 4: a(4) = A006356(2) - A006356(0) = 6 - 1 = 5
 CH3-CH2-CH2-CH2-CH3, CH3-CH=C=CH-CH3, CH2=CH-CH2-CH=CH2, CH≡C-CH2-C≡CH, CH2=C=C=C=CH2
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 0, 1, 0, -1}, {1, 3, 2, 6, 5, 14}, 50] (* Paolo Xausa, Feb 22 2024 *)
  • PARI
    Vec(O(x^55)+(1+3*x-x^5)/(1-2*x^2-x^4+x^6)) \\ Joerg Arndt, Feb 18 2024
  • Python
    a = [1, 3, 2, 6, 5, 14]
    for i in range(30):
        a.append(2*a[-2]+a[-4]-a[-6])
    print(a)
    

Formula

a(n) = 2*A306334(n) - A006356(n).
Also:
a(0) = 1;
a(2) = 2;
a(n) = A006356((n+1)/2) if n is odd;
a(n) = A006356(n/2) - A006356((n-4)/2) if n is even.
G.f.: (1+3*x-x^5)/(1-2*x^2-x^4+x^6). - Joerg Arndt, Feb 18 2024

A373567 Expansion of x + 1/(-x - 1/(-x - 1/(-x + 1))).

Original entry on oeis.org

1, 4, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209, 19181424995, 43100270734, 96845429254
Offset: 0

Views

Author

Peter Luschny, Jun 10 2024

Keywords

Comments

a(n) is the number of up-down words of length n over an alphabet of size 4. - Sela Fried, Apr 08 2025

References

  • L. Carlitz and R. Scoville, Up-down sequences, Duke Math. J. (39) (1972), 583-598.

Crossrefs

Essentially the same as A006356.
Cf. A050446.

Programs

  • Mathematica
    CoefficientList[Series[x + 1/(-x - 1/(-x - 1/(-x + 1))), {x, 0, 31}], x] (* Michael De Vlieger, Jun 10 2024 *)

Formula

a(n) = [x^n] (x^4 - x^3 - 3*x^2 + 2*x + 1) / (x^3 - x^2 - 2*x + 1).

A006363 Number of antichains (or order ideals) in the poset B_4 X [n]; or size of the distributive lattice J(B_4 X [n]).

Original entry on oeis.org

1, 168, 7581, 160948, 2068224, 18561984, 127234008, 706987164, 3320153661, 13583619496, 49530070161, 163806121656, 498180781144, 1408758106368, 3737505070344, 9372218674824, 22351423903953, 50960797533096, 111574385244253, 235475590500876, 480631725411720, 951504952784320, 1831615165328400, 3435931869872580
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of order preserving maps from B_4 into [n+1]. a(n) is also the number of length n+1 multichains from bottom to top in J(B_4). See Stanley reference for bijections with description in title. - Geoffrey Critzer, Jan 15 2021

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, page 256, Proposition 3.5.1.

Crossrefs

Programs

  • Mathematica
    p = Subsets[Range[4]];
    f[list1_, list2_] := If[ContainsAll[list2, list1], 1, 0]; \[Zeta] = Table[Table[f[p[[i]], p[[j]]], {j, 1, 16}], {i, 1, 16}]; JB4 =
    Complement[Subsets[Range[16]],Level[Table[Select[Subsets[Range[16]],MemberQ[#, i] && !ContainsAll[Level[Position[\[Zeta][[All, i]], 1], {2}]][#] &], {i, 2,16}], {2}] // DeleteDuplicates]; \[Zeta]JB4 =Table[Table[f[JB4[[i]], JB4[[j]]], {j, 1, 168}], {i, 1,168}]; \[CapitalOmega][n_] := Expand[InterpolatingPolynomial[
    Table[{k, MatrixPower[\[Zeta]JB4, k][[1, 168]]}, {k, 1, 17}],n]]; Table[\[CapitalOmega][n], {n, 1, 30}] (* Geoffrey Critzer, Jan 15 2021 *)

Extensions

Title corrected by Geoffrey Critzer, Jan 15 2021
a(11)-a(23) from Geoffrey Critzer, Jan 15 2021

A120771 Expansion of ( 1-x^3+x^4+x^5-x^8 ) / ( 1-2*x^3-x^6+x^9 ).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 2, 1, 6, 5, 3, 14, 11, 6, 31, 25, 14, 70, 56, 31, 157, 126, 70, 353, 283, 157, 793, 636, 353, 1782, 1429, 793, 4004, 3211, 1782, 8997, 7215, 4004, 20216, 16212, 8997, 45425, 36428, 20216, 102069, 81853, 45425, 229347, 183922, 102069, 515338, 413269, 229347, 1157954, 928607, 515338
Offset: 0

Views

Author

Gary W. Adamson, Jul 03 2006

Keywords

Crossrefs

Cf. A077998 (trisection), A006054 (trisection), A006356 (trisection), A038196.

Programs

  • Mathematica
    CoefficientList[Series[(1-x^3+x^4+x^5-x^8)/(1-2*x^3-x^6+x^9),{x,0,60}],x] (* or *) LinearRecurrence[{0,0,2,0,0,1,0,0,-1},{1,0,0,1,1,1,3,2,1},60] (* Harvey P. Dale, Feb 19 2016 *)

Formula

Three consecutive coefficients are generated from the left row of the n-th power of the matrix [1,1,1; 1,1,0; 1,0,0].

A268534 Size of free Kleene algebra on n generators.

Original entry on oeis.org

2, 6, 84, 43918
Offset: 0

Views

Author

N. J. A. Sloane, Feb 22 2016

Keywords

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
Previous Showing 51-57 of 57 results.