cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A006396 Number of sensed planar maps with n edges and without faces or vertices of degree 1.

Original entry on oeis.org

1, 0, 1, 2, 4, 10, 36, 132, 616, 3060, 16207, 88990, 503816
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006384, A006388, A006397 (unsensed), A379435 (rooted).

Extensions

a(9)-a(12) from Sean A. Irvine, Mar 28 2017
a(0)-a(2) prepended by Andrew Howroyd, Jan 16 2025

A006400 Number of sensed simple planar maps with n edges and without vertices of degree 1.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 5, 11, 33, 117, 431, 1755, 7485
Offset: 0

Views

Author

Keywords

Comments

A simple planar map is a planar map without loops or parallel edges. - Andrew Howroyd, Jan 16 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006384, A006388, A006394, A006401 (unsensed), A379436 (rooted).

Extensions

a(11) and a(12) from Sean A. Irvine, Mar 30 2017
a(0)-a(2) prepended by Andrew Howroyd, Jan 14 2025

A054935 Number of planar maps with n edges up to orientation-preserving duality.

Original entry on oeis.org

1, 3, 7, 33, 156, 1070, 7515, 59151, 483925, 4136964, 36416865, 329048627, 3037029030, 28553451498, 272766018806, 2642420298576, 25916954091582, 257009789443925, 2573962338306141, 26008719387850068, 264933535266372732
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Comments

Replacing each edge by a vertex of degree 4, one sees that a(n) is also the number of non-isomorphic planar maps (a.k.a. clean dessins on the Riemann sphere) with n vertices of degree 4, and 2n edges.

Crossrefs

Average of A006384 and A006849, the latter interspersed with 0's (cf. formula).

Programs

  • Mathematica
    a6384[0] = 1; a6384[n_] := (1/(2n))*(2*(3^n/((n + 1)*(n + 2)))*Binomial[2 n, n] + Sum[ EulerPhi[n/k]*3^k*Binomial[ 2k, k], {k, Most[ Divisors[ n]]}]) + q[n];
    q[n_?OddQ] := 2*(3^((n - 1)/2)/(n + 1))*Binomial[ n - 1, (n - 1)/2];
    q[n_?EvenQ] := 2*(n-1)*(3^((n-2)/2)/(n*(n+2)))*Binomial[ n - 2, (n - 2)/2];
    a6849[n_] := 3^n*CatalanNumber[n]/2 + If[OddQ[n], 3^((n - 1)/2)* CatalanNumber[(n - 1)/2]/2, 0];
    a[n_] := If[OddQ[n], a6384[n]/2, (a6384[n] + a6849[n/2])/2];
    Array[a, 21] (* Jean-François Alcover, Aug 30 2019 *)
  • PARI
    F(n) = { 3^n * binomial(2*n,n); }
    S(n) = { my(acc = 0);
             fordiv(n, d, if(d != n, acc += eulerphi(n/d) * F(d)));
             return(acc); }
    Q(n) = { if (n%2, 2 * F((n-1)/2) / (n+1),
                      2 * F((n-2)/2) * (n-1)/(n*(n+2))); }
    A006384(n) = { if (n < 0, return(0)); if (n == 0, return(1));
                   (2*F(n)/((n+1)*(n+2)) + S(n)) / (2*n) + Q(n); }
    G(n) = { 3^n * binomial(2*n,n) / (n + 1); }
    A006849(n) = { if (n <= 0, return(0));
                   if (n%2, (G(n) + G((n-1)/2)) / 2, G(n)/2); }
    a(n) = { if (n <= 0, return(0));
             if (n%2,  A006384(n)/2, (A006384(n) + A006849(n/2))/2) };
    apply(n->a(n), vector(33, i, i)) \\ Gheorghe Coserea, Aug 20 2015

Formula

a(2k+1) = A006384(2k+1)/2 and a(2k) = (A006384(2k) + A006849(k))/2. - Gheorghe Coserea, Aug 05 2015

Extensions

More terms from Valery A. Liskovets, May 27 2006
More terms from Sean A. Irvine, Mar 24 2013

A103937 Number of unrooted n-edge maps in the plane (planar map with a distinguished outside face).

Original entry on oeis.org

1, 2, 6, 26, 150, 1032, 8074, 67086, 586752, 5317226, 49592424, 473357994, 4606116310, 45554761836, 456848968518, 4637014782748, 47563495004742, 492422043299964, 5140194991046122, 54053208147441474, 572191817441284272, 6093471300213162072, 65245904156725935906
Offset: 0

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Antidiagonal sums of A380240.

Programs

  • Mathematica
    a[n_] := (1/(2n)) (3^n Binomial[2n, n]/(n+1) + Sum[Boole[0Jean-François Alcover, Aug 28 2019 *)
  • PARI
    a(n) = {if(n==0, 1, (3^n*binomial(2*n,n)/(n+1) + sumdiv(n, k, if(kAndrew Howroyd, Jan 22 2025

Formula

a(n)=(1/(2n))[3^n*binomial(2n, n)/(n+1) +sum_{0A000010, q(n)=0 if n is even and q(n)=3^((n-1)/2)binomial(n-1, (n-1)/2)/(n+1) if n is odd.

Extensions

a(0)=1 prepended by Andrew Howroyd, Jan 21 2025

A006398 Number of sensed planar maps with n edges and without loops or isthmuses.

Original entry on oeis.org

1, 0, 1, 2, 4, 8, 29, 92, 403, 1846, 9239, 48028, 259567
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006384, A006390, A006399 (unsensed), A099553 (rooted).

Extensions

a(9)-a(12) from Sean A. Irvine, Mar 29 2017
a(0)-a(1) prepended by Andrew Howroyd, Jan 16 2025

A006404 Number of sensed 2-connected maps with n edges and without faces of degree 2.

Original entry on oeis.org

1, 1, 2, 5, 10, 29, 96, 339, 1320, 5473
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006384, A006402, A006405 (unsensed).

Extensions

a(11) and a(12) from Sean A. Irvine, Apr 02 2017

A054937 Number of chiral pairs of planar maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 5, 64, 655, 5858, 51369, 448982, 3967466, 35603366, 324990677, 3016738988, 28449849867, 272233685444, 2639649712580, 25902435997188
Offset: 0

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Formula

a(n) = A006385(n) - A006443(n). - R. J. Mathar, Oct 01 2011

Extensions

a(0)=0 prepended by Andrew Howroyd, Jan 13 2025
Previous Showing 11-17 of 17 results.