cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A107980 Triangle read by rows: T(n,k) = (n+2)*(k+1)*(k+2)*(2*n-k+2)*(2*n-k+3)/24.

Original entry on oeis.org

1, 5, 9, 14, 30, 40, 30, 70, 105, 125, 55, 135, 216, 280, 315, 91, 231, 385, 525, 630, 686, 140, 364, 624, 880, 1100, 1260, 1344, 204, 540, 945, 1365, 1755, 2079, 2310, 2430, 285, 765, 1360, 2000, 2625, 3185, 3640, 3960, 4125, 385, 1045, 1881, 2805, 3740, 4620, 5390, 6006, 6435, 6655
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

Examples

			Triangle begins:
    1;
    5,    9;
   14,   30,   40;
   30,   70,  105,  125;
   55,  135,  216,  280,  315;
   91,  231,  385,  525,  630,  686;
  140,  364,  624,  880, 1100, 1260, 1344;
  204,  540,  945, 1365, 1755, 2079, 2310, 2430;
  285,  765, 1360, 2000, 2625, 3185, 3640, 3960, 4125;
  385, 1045, 1881, 2805, 3740, 4620, 5390, 6006, 6435, 6655;
  506, 1386, 2520, 3800, 5130, 6426, 7616, 8640, 9450, 10010, 10296;
		

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{B(n,3,l)}).

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n then 1/24*(n+2)*(k+1)*(k+2)*(2*n-k+2)*(2*n-k+3) else 0 fi end: for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_]:= (1/6)*(n+2)*Binomial[k+2, 2]*Binomial[2*n-k+3, 2];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 14 2021 *)
  • Sage
    def A107980(n,k): return (n+2)*(k+1)*(k+2)*(2*n-k+2)*(2*n-k+3)/24
    flatten([[A107980(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Dec 14 2021

Formula

T(n, k) = (n+2)*(k+1)*(k+2)*(2*n-k+2)*(2*n-k+3)/24.
T(n, 0) = A000330(n+1).
T(n, n) = A006414(n).
Sum_{k=0..n} T(n, k) = A006858(n+1).
T(n, n-1) = 5*binomial(n+4, 5) = 5*A000389(n+4). - G. C. Greubel, Dec 14 2021

A354968 Triangle read by rows: T(n, k) = n*k*(n+k)*(n-k)/6.

Original entry on oeis.org

1, 4, 5, 10, 16, 14, 20, 35, 40, 30, 35, 64, 81, 80, 55, 56, 105, 140, 154, 140, 91, 84, 160, 220, 256, 260, 224, 140, 120, 231, 324, 390, 420, 405, 336, 204, 165, 320, 455, 560, 625, 640, 595, 480, 285, 220, 429, 616, 770, 880, 935, 924, 836, 660, 385, 286, 560, 810, 1024
Offset: 2

Views

Author

Ali Sada and Yifan Xie, Jun 14 2022

Keywords

Comments

Given a Pythagorean triple (a,b,c), define S = c^4 - a^4 - b^4. Using Euclid's parameterization (a = 2*n*k, b = n^2 - k^2, c = n^2 + k^2), substituting to get S in terms of n and k gives S = 8*n^2*k^2*((n^2 - k^2))^2, which is a multiple of 288; T(n, k) = sqrt(S/288) = n*k*(n^2 - k^2)/6 = n*k*(n+k)*(n-k)/6.

Examples

			Triangle begins:
  n/k   1    2    3    4    5    6    7
  2     1;
  3     4,   5;
  4    10,  16,  14;
  5    20,  35,  40,  30;
  6    35,  64,  81,  80,  55;
  7    56, 105, 140, 154, 140,  91;
  8    84, 160, 220, 256, 260, 224, 140;
  ...
For n = 3, k = 2, a = 5, b = 12, c = 13. T(3, 2) = sqrt((13^4 - 5^4 - 12^4)/288) = 5.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Page 72.

Crossrefs

Cf. A120070 (b leg), A055096 (c hypotenuse).
Cf. A006414 (row sums), A000292 (column 1), A077414 (column 2), A000330 (diagonal), A107984 (transpose), A210440 (diagonal which begins with 4).

Programs

  • Mathematica
    T[n_,k_]:=n*k(n^2-k^2)/6; Table[T[n,k],{n,2,11},{k,n-1}]//Flatten (* Stefano Spezia, Jul 11 2025 *)
  • PARI
    apply( {A354968(n, k=0)=k|| k=n-1-(1-n=ceil(sqrt(8*n-7)/2+.5))*(2-n)\2; k*(n-k)*n*(n+k)\6}, [2..66]) \\ M. F. Hasler, May 08 2025

Formula

G.f.: x^2*y*(1 + x*y - 4*x^2*y + x^3*y + x^4*y^2)/((1 - x)^4*(1 - x*y)^4). - Stefano Spezia, Jul 11 2025

A195166 Numbers expressible as 2^a - 2^b, with 0 <= b < a, such that n^a - n^b is divisible by 2^a - 2^b for all n.

Original entry on oeis.org

1, 2, 6, 12, 30, 24, 60, 120, 252, 240, 504, 16380, 32760, 65520
Offset: 1

Views

Author

Michel Marcus, Dec 21 2012

Keywords

Comments

1 = 2^1 - 2^0. (n^1 - n^0)/1 : A000027
2 = 2^2 - 2^1. (n^2 - n^1)/2 : A000217
6 = 2^3 - 2^1. (n^3 - n^1)/6 : A000292
12 = 2^4 - 2^2. (n^4 - n^2)/12 : A002415
30 = 2^5 - 2^1. (n^5 - n^1)/30 : A033455
24 = 2^5 - 2^3. (n^5 - n^3)/24 : A006414
60 = 2^6 - 2^2. (n^6 - n^2)/60 : A213547
120 = 2^7 - 2^3. (n^7 - n^3)/120 : A114239
252 = 2^8 - 2^2. (n^8 - n^2)/252 :
240 = 2^8 - 2^4. (n^8 - n^4)/240 : A078876
504 = 2^9 - 2^3. (n^9 - n^3)/504 :
16380 = 2^14 - 2^2. (n^14 - n^2)/16380 :
32760 = 2^15 - 2^3. (n^15 - n^3)/32760 :
65520 = 2^16 - 2^4. (n^16 - n^4)/65520 :
Comment from Tomohiro Yamada, Oct 05 2022: (Start)
"The Mod Set Stanford University" and Carl Pomerance independently noted that the completeness of this sequence follows from a result of Schinzel on primitive prime factors of sequences a^n - b^n in the remark to a problem of Harry Ruderman asking whether if 2^a - 2^b divides 3^a - 3^b, then 2^a - 2^b belongs to this sequence.
The Mod Set verified that if a > b, 2^a - 2^b divides 3^a - 3^b, but 2^a - 2^b does not belong to this sequence, then a - b > 1900. Ram Murty and Kumar Murty proved that there are only finitely many natural numbers a, b such that 2^a - 2^b divides 3^a - 3^b.
Qi Sun and Ming Zhi Zhang also showed that if a > b and n^a - n^b is divisible by 2^a - 2^b for all n, then 2^a - 2^b belongs to this sequence. (End)

Examples

			a(3) = 6 belongs to this sequence since (n^3 - n)/6 = C(n+1, 3) = A000292(n-1).
		
Previous Showing 11-13 of 13 results.