cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A248584 Decimal expansion of the value of the continued fraction constructed from prime primorials plus 1.

Original entry on oeis.org

3, 1, 8, 2, 4, 8, 1, 6, 5, 0, 8, 3, 6, 9, 0, 1, 2, 4, 7, 7, 7, 6, 8, 5, 5, 8, 9, 9, 9, 6, 7, 8, 7, 8, 4, 4, 7, 8, 8, 6, 5, 7, 1, 2, 2, 3, 3, 1, 5, 3, 3, 0, 4, 9, 4, 6, 7, 0, 9, 4, 7, 9, 6, 9, 6, 0, 9, 0, 4, 3, 2, 9, 3, 5, 8, 3, 3, 3, 5, 0, 4, 6, 3, 7, 7, 9, 5, 0, 0, 6, 1, 9, 8, 8, 2, 5, 6, 0, 1, 7, 3, 9
Offset: 0

Views

Author

Jean-François Alcover, Oct 09 2014

Keywords

Examples

			0.318248165083690124777685589996787844788657122331533049467...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[FromContinuedFraction[{0, 3, 7, 31, 211, 2311, 200560490131}], 102]] // First

A248585 Decimal expansion of the value of the continued fraction constructed from prime primorials minus 1.

Original entry on oeis.org

1, 9, 8, 6, 3, 0, 1, 5, 7, 3, 0, 3, 5, 0, 3, 8, 1, 0, 8, 7, 5, 2, 0, 1, 2, 3, 3, 6, 1, 4, 3, 4, 6, 8, 6, 2, 8, 7, 5, 8, 7, 0, 6, 3, 0, 8, 9, 8, 4, 7, 9, 7, 7, 7, 6, 2, 5, 6, 4, 7, 0, 2, 4, 9, 8, 4, 2, 3, 5, 5, 4, 1, 1, 5, 1, 3, 0, 8, 4, 4, 2, 6, 1, 9, 0, 9, 2, 3, 1, 4, 7, 3, 7, 3, 6, 3, 3, 9, 3, 1, 2, 8
Offset: 0

Views

Author

Jean-François Alcover, Oct 09 2014

Keywords

Examples

			0.198630157303503810875201233614346862875870630898479777625647...
		

Crossrefs

Programs

  • Mathematica
    cf = {0, 5, 29, 2309, 30029, 304250263527209, 23768741896345550770650537601358309}; RealDigits[N[FromContinuedFraction[cf], 102]] // First

A250294 Primes p such that p#-1 is a semiprime, where # is the primorial (A034386).

Original entry on oeis.org

7, 17, 29, 31, 43, 59, 71, 73, 97, 101, 223, 233, 257, 439, 503, 709, 859, 863, 1013
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Comments

1153 and 1381 are also terms. - Amiram Eldar, Feb 16 2020
a(20) >= 1091. 1091# - 1 is a 458-digit composite with no known factors. - Hugo Pfoertner, Feb 05 2021

Examples

			a(2) = 17 so 17# - 1 = 510509 = 61 * 8369 is a semiprime.
		

Crossrefs

Programs

Formula

A001221(A034386(a(n)) - 1) = 2. - Amiram Eldar, Feb 16 2020

Extensions

a(15)-a(18) using factordb.com from Amiram Eldar, Feb 16 2020
a(19) using factordb.com from Hugo Pfoertner, Feb 05 2021
Edited by Max Alekseyev, Aug 26 2021

A333058 0, 1, or 2 primes at primorial(n) +- 1.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Frank Ellermann, Mar 06 2020

Keywords

Comments

a(n) = 0 marks a prime gap size of at least 2*prime(n+1)-1, e.g., primorial(8) +- prime(9) = {9699667,9699713} are primes, gap 2*23-1.
Mathworld reports that it is not known if there are an infinite number of prime Euclid numbers.
The tables in Ondrejka's collection contain no further primorial twin primes after {2309,2311} = primorial(13) +- 1 up to primorial(15877) +- 1 with 6845 digits.

Examples

			a(2) = a(3) = a(5) = 2: 2*3 +-1 = {5,7}, 6*5 +-1 = {29,31} and 210*11 +-1 = {2309,2311} are twin primes.
a(1) = a(4) = a(6) = 1: 1, 30*7 - 1 = 209 and 2310*13 + 1 = 30031 are not primes.
a(7) = 0: 510509 = 61 * 8369 and 510511 = 19 * 26869 are not primes.
		

References

  • H. Dubner, A new primorial prime, J. Rec. Math., 21 (No. 4, 1989), 276.

Crossrefs

Cf. A096831, A002110 (primorials, p#), A057706.
Cf. A006862 (Euclid, p#+1), A005234 (prime p#+1), A014545 (index prime p#+1).
Cf. A057588 (Kummer, p#-1), A006794 (prime p#-1), A057704 (index prime p#-1).
Cf. A010051, A088411 (where a(n) is positive), A088257.

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, ithprime(n)*p(n-1)) end:
    a:= n-> add(`if`(isprime(p(n)+i), 1, 0), i=[-1, 1]):
    seq(a(n), n=0..120);  # Alois P. Heinz, Mar 18 2020
  • Mathematica
    primorial[n_] := primorial[n] = Times @@ Prime[Range[n]];
    a[n_] := Boole@PrimeQ[primorial[n] - 1] + Boole@PrimeQ[primorial[n] + 1];
    a /@ Range[0, 105] (* Jean-François Alcover, Nov 30 2020 *)
  • Rexx
    S = ''                     ;  Q = 1
    do N = 1 to 27
       Q = Q * PRIME( N )
       T = ISPRIME( Q - 1 ) + ISPRIME( Q + 1 )
       S = S || ',' T
    end N
    S = substr( S, 3 )
    say S                      ;  return S

Formula

a(n) = [ isprime(primorial(n) - 1) ] + [ isprime(primorial(n) + 1) ].
a(n) = Sum_{i in {-1,1}} A010051(primorial(n) + i).
Previous Showing 21-24 of 24 results.