cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A244638 In the '3x+1' problem, primes which as starting values set new records for number of steps to reach 1, where a step means either 'divide by two' or 'triple plus one and then divide by two'.

Original entry on oeis.org

2, 3, 7, 19, 31, 41, 73, 97, 193, 257, 313, 487, 859, 937, 1249, 2539, 3331, 3947, 5351, 5839, 7963, 9257, 12343, 21943, 31687, 45127, 60169, 78791, 115547, 180463, 213881, 234239, 270271, 376603, 875681, 1023871, 1252663, 1564063, 2585279, 4063723, 5649499, 9973919, 11200681, 39824647, 41464303, 73583071, 95592191, 226588897, 1359533387, 2263333321, 3349304527
Offset: 1

Views

Author

Zak Seidov and Robert G. Wilson v, Jul 03 2014

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ NestWhileList[ If[ OddQ@ #, (3 # + 1)/2, #/2] &, n, # > 1 &]  mx = 0; p = 2; lst = {}; While[p < 10^10/2, a = f@ p; If[a > mx, mx = a; Print[{PrimePi@p, p, a - 1}]; AppendTo[ lst, p]]; p = NextPrime@ p]; lst

A224540 Number of numbers k such that all terms of the Collatz (3x+1) iteration of k are <= 3^n.

Original entry on oeis.org

1, 2, 4, 12, 36, 106, 249, 613, 1732, 8028, 23348, 69370, 210807, 634839, 1893582, 5686389, 17031777, 51073675, 153185957, 459516225, 1378707224, 4135278456
Offset: 0

Views

Author

T. D. Noe, Apr 24 2013

Keywords

Examples

			For n = 3, the twelve k are 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, and 24.
		

Crossrefs

Programs

  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; Table[Select[Range[3^n], Max[Collatz[#]] <= 3^n &], {n, 8}]

Extensions

a(20)-a(21) from Donovan Johnson, Jun 05 2013

A380138 a(n) is the largest value in the '3x+1' trajectory of starting points producing a record number of steps.

Original entry on oeis.org

1, 2, 16, 16, 52, 52, 52, 88, 9232, 9232, 9232, 9232, 9232, 9232, 9232, 9232, 9232, 9232, 250504, 190996, 190996, 250504, 250504, 250504, 481624, 975400, 975400, 497176, 11003416, 11003416, 106358020, 18976192, 41163712, 106358020, 21933016, 104674192, 593279152
Offset: 1

Views

Author

Hugo Pfoertner, Jan 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    s = Map[ToExpression,
      StringSplit[
        Import["https://oeis.org/A006877/b006877.txt", "Data"][[2 ;; -1]]
      ][[All, -1]] ];
    Map[Max@ NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, #, # > 1 &] &, s] (* Michael De Vlieger, Jan 13 2025 *)

Formula

a(n) = A025586(A006877(n)).

A276665 In the '3x+1' problem, these values for the starting value set new records for both the number of steps and the highest point of trajectory before reaching 1.

Original entry on oeis.org

1, 2, 3, 7, 27, 703, 26623
Offset: 1

Views

Author

Keywords

Comments

Both the 3x+1 steps and the halving steps are counted.
If it exists, a(7) > 14727207461063895711 (A006877(148)). - Hugo Pfoertner, Jan 12 2025

Crossrefs

Intersection of A006877 and A006884.
Previous Showing 21-24 of 24 results.