cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: José Eduardo Gaboardi de Carvalho

José Eduardo Gaboardi de Carvalho's wiki page.

José Eduardo Gaboardi de Carvalho has authored 6 sequences.

A283735 Expansion of 10 in base Pi.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 0, 0, 1, 1, 1, 1, 2, 1, 0, 2, 0, 1, 2, 0, 1, 0, 2, 2, 1, 2, 0, 2, 1, 1, 0, 0, 1, 1, 1, 2, 1, 2, 0, 0, 3, 0, 1, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 2, 0, 2, 2, 1, 2, 1, 0, 0, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 3, 0, 0, 2, 0, 1, 0, 1
Offset: 3

Keywords

Examples

			100.0102212222..._{Pi}
		

Crossrefs

Programs

  • Mathematica
    RealDigits[10, Pi, 100][[1]] (* Indranil Ghosh, Mar 15 2017 *)

A276665 In the '3x+1' problem, these values for the starting value set new records for both the number of steps and the highest point of trajectory before reaching 1.

Original entry on oeis.org

1, 2, 3, 7, 27, 703, 26623
Offset: 1

Keywords

Comments

Both the 3x+1 steps and the halving steps are counted.
If it exists, a(7) > 14727207461063895711 (A006877(148)). - Hugo Pfoertner, Jan 12 2025

Crossrefs

Intersection of A006877 and A006884.

A276199 Smallest prime that begins with at least n digits of Pi.

Original entry on oeis.org

3, 31, 31469, 314107, 314159, 314159, 314159207, 3141592603, 31415926541, 314159265307, 314159265359, 3141592653581, 314159265358909, 3141592653589711, 31415926535897921, 314159265358979347, 3141592653589793239, 3141592653589793239, 314159265358979323861
Offset: 1

Keywords

Examples

			a(7) = 314159207, begins with first 7 digits of Pi = 3.141592653...
		

Crossrefs

Cf. A005042.

Programs

  • Perl
    use ntheory ":all"; sub a276199 { my $l=shift; my $p="3".substr(Pi($l+20),2,$l-1); for my $dig (0 .. 20) { my $add = "0" x $dig; do { return "$p$add" if is_prime("$p$add"); } while length(++$add) == $dig; } } # Dana Jacobsen, Aug 30 2016

A275614 Decimal expansion of number with continued fraction expansion 0, 1, 2, 4, 8, 16, 32, ... (powers of 2).

Original entry on oeis.org

6, 9, 1, 5, 9, 4, 1, 9, 2, 4, 2, 1, 9, 7, 8, 0, 8, 4, 2, 8, 2, 8, 9, 2, 8, 6, 6, 9, 2, 6, 4, 3, 0, 6, 3, 6, 8, 3, 3, 8, 0, 1, 4, 3, 6, 9, 6, 2, 9, 5, 5, 4, 7, 7, 3, 3, 3, 5, 5, 0, 7, 0, 9, 8, 9, 1, 7, 3, 2, 6, 6, 8, 9, 2, 5, 2, 7, 8, 1, 0, 1, 1, 9, 0, 7, 7, 4
Offset: 0

Keywords

Examples

			0.69159419242197808428289286692643...
		

Crossrefs

Programs

  • PARI
    terms=sqrtint(bitprecision(1.))+2; \\ terms needed at current precision
    t=contfracpnqn(vector(terms,i,.5<Charles R Greathouse IV, Aug 04 2016

Formula

From Amiram Eldar, Feb 08 2022: (Start)
Equals 1/A214070.
Equals 1/(1 + A096641). (End)

Extensions

Definition corrected by Jianing Song, Mar 29 2025

A269588 Numbers n such that n^2 ends with the digits of n reversed (A004086(n)).

Original entry on oeis.org

1, 5, 6, 963, 9867, 65766, 69714, 6317056, 90899553, 169605719, 4270981082, 96528287587, 465454256742, 692153612536, 182921919071841, 655785969669834, 650700037578750084, 125631041500927357539, 673774165549097456624, 16719041449406813636569
Offset: 1

Keywords

Comments

a(29)>10^32 (if it exists)

Examples

			6317056^2 = 39905196507136 which ends with 6507136, so 6317056 is a term.
		

Crossrefs

Subsequence of A115761.

Programs

  • Mathematica
    Select[Range[10^7], Function[k, Take[IntegerDigits[#^2], -Length@ k] == Reverse@ k]@ IntegerDigits@ # &] (* Michael De Vlieger, Mar 04 2016 *)
  • PARI
    isA269588(n)=dn = digits(n); rn = subst(Polrev(dn), x, 10); nbd = #dn; (n^2 - rn) % 10^nbd == 0; \\ Michel Marcus, Mar 01 2016
    
  • PARI
    \\ printA269588len(d) prints all terms of the sequence with d digits
    rev(n) = eval(concat(Vecrev(Str(n))));
    { printA269588len(d) = my(l, u, n); l=ceil(d/2); u=floor(d/2); for(y=0, 10^l-1, n=rev(y^2 % 10^u)*10^l+y; if(#Str(n)==d && Mod(n, 10^d)^2==rev(n), print(n)); ); }
    \\ Max Alekseyev, Mar 07 2016

Extensions

a(18)-a(20) from Max Alekseyev, Mar 07 2016
a(21)-a(27) from Robert Gerbicz, Apr 03 2016
a(28) from Dieter Beckerle, Jun 09 2016

A243916 Largest safe prime less than 2^n.

Original entry on oeis.org

7, 11, 23, 59, 107, 227, 503, 1019, 2039, 4079, 8147, 16223, 32603, 65267, 130787, 262127, 524243, 1048343, 2097143, 4194287, 8388287, 16776899, 33553799, 67108187, 134217323, 268435019, 536870723, 1073740439, 2147483579, 4294967087
Offset: 3

Keywords

Comments

Largest safe prime (A005385) p=2*q+1, q also prime (A005384), that can be represented using n binary digits.

Crossrefs

Programs

  • Mathematica
    lsp[n_]:=Module[{sp=NextPrime[2^n,-1]},While[!PrimeQ[(sp-1)/2],sp= NextPrime[ sp,-1]];sp]; Array[lsp,35,3] (* Harvey P. Dale, Feb 10 2019 *)
  • Python
    from sympy import isprime
    def a(n):
        if n<3: return 0
        i=2**n - 1
        while True:
            if isprime(i) and isprime((i - 1)/2): return i
            else: i-=2 # Indranil Ghosh, Jun 12 2017, after Antti Karttunen's Scheme Code