cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A095147 Odd binomial coefficients: C(n,k), 2 <= k <= n-2, sorted, duplicates removed.

Original entry on oeis.org

15, 21, 35, 45, 55, 91, 105, 153, 165, 171, 231, 253, 325, 351, 435, 455, 465, 495, 561, 595, 703, 715, 741, 861, 903, 969, 1001, 1035, 1081, 1225, 1275, 1287, 1365, 1431, 1485, 1653, 1711, 1771, 1891, 1953, 2145, 2211, 2415, 2485, 2701, 2775, 2925, 3003
Offset: 1

Views

Author

Robert G. Wilson v, May 29 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Take[ Select[ Union[ Flatten[ Table[ Binomial[n, k], {n, 2, 75}, {k, 2, n - 2}]]], OddQ[ # ] &], 48]

A137905 Numbers that appear as binomial coefficients exactly twice.

Original entry on oeis.org

3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88
Offset: 1

Views

Author

David Wasserman, Feb 21 2008

Keywords

Comments

Complement of A006987; a(n) = A058084(a(n)). - Reinhard Zumkeller, Mar 20 2009

Examples

			7 is a member because 7 = binomial(7, 1) = binomial(7, 6) and no other binomial coefficient equals 7. [clarified by _Jonathan Sondow_, Jan 12 2018]
		

Crossrefs

Programs

  • PARI
    isok(n) = (sum(i=0, n, sum(j=0, i, binomial(i,j)==n)) == 2) \\ Michel Marcus, Jun 16 2013

Formula

a(n) = A185024(n+1). - Elijah Beregovsky, May 14 2019

A375572 Numbers occurring at least twice in Bernoulli's triangle A008949.

Original entry on oeis.org

1, 4, 7, 8, 11, 15, 16, 22, 26, 29, 31, 32, 37, 42, 46, 56, 57, 63, 64, 67, 79, 92, 93, 99, 106, 120, 121, 127, 128, 130, 137, 154, 163, 172, 176, 191, 211, 219, 232, 247, 254, 255, 256, 277, 299, 301, 326, 352, 378, 379, 382, 386, 407, 436, 466, 470, 497, 502
Offset: 1

Views

Author

Pontus von Brömssen, Aug 19 2024

Keywords

Comments

Equivalently, 1 together with numbers occurring in columns k >= 2 of Bernoulli's triangle.

Crossrefs

Programs

  • PARI
    isok(k) = my(nb=0); for (i=0, k, nb += #select(x->(x==k), vector(i+1, j, sum(jj=0, j-1, binomial(i, jj))))); nb >= 2; \\ Michel Marcus, Aug 22 2024
    
  • PARI
    lista(nn) = my(v = vector(nn)); for (n=1, nn, my(w=vector(n+1, j, sum(jj=0, j-1, binomial(n, jj)))); for (i=1, #w, if (w[i] <= nn, v[w[i]]++));); Vec(select(x->(x>=2), v, 1)); \\ Michel Marcus, Aug 23 2024
    
  • Python
    from math import comb
    from bisect import insort
    def A375572_list(nmax):
        a_list = [1]
        if nmax == 1: return a_list
        nkb_list = [(2,2,4)] # List of triples (n,k,A008949(n,k)), sorted by the last element.
        while 1:
            b0 = nkb_list[0][2]
            a_list.append(b0)
            if len(a_list) == nmax: return a_list
            while 1:
                n,k,b = nkb_list[0]
                if b > b0: break
                del nkb_list[0]
                insort(nkb_list,(n+1,k,2*b-comb(n,k)),key=lambda x:x[2])
                if n == k:
                    insort(nkb_list,(n+1,k+1,2**(k+1)),key=lambda x:x[2])

A319382 Binomial coefficients binomial(m,k) for 2 <= k <= m/2 in sorted order.

Original entry on oeis.org

6, 10, 15, 20, 21, 28, 35, 36, 45, 55, 56, 66, 70, 78, 84, 91, 105, 120, 120, 126, 136, 153, 165, 171, 190, 210, 210, 220, 231, 252, 253, 276, 286, 300, 325, 330, 351, 364, 378, 406, 435, 455, 462, 465, 495, 496, 528, 560, 561, 595, 630, 666, 680, 703, 715, 741, 780, 792, 816, 820, 861, 903, 924
Offset: 1

Views

Author

Robert Israel, Sep 18 2018

Keywords

Comments

In contrast to A006987, here the duplicates are not removed. Thus 120 = binomial(10,3) = binomial(16,2) appears twice.

Examples

			The first three terms are binomial(4,2) = 6, binomial(5,2) = 10, binomial(6,2) = 15.
		

Crossrefs

Cf. A003015, A006987, A022911 (values of m), A022912 (values of k).

Programs

  • Maple
    N:= 10^3: # to get terms <= N
    Res:= NULL:
    for n from 2 while n*(n-1)/2 <= N do
      for k from 2 to n/2 do
        v:= binomial(n,k);
        if v > N then break fi;
        Res:= Res,v
    od od:
    sort([Res]);
  • Mathematica
    M = 10^3;
    Reap[For[n = 2, n(n-1)/2 <= M, n++, For[k = 2, k <= n/2, k++, v = Binomial[n, k]; If[v > N, Break[]]; Sow[v]]]][[2, 1]] // Sort (* Jean-François Alcover, Apr 27 2019, from Maple *)

Formula

a(n) = binomial(A022911(n),A022912(n)).

A360653 Irregular table read by rows; the first row contains the value 1, and for n > 1, the n-th row lists the numbers of the form binomial(m-1, k) such that binomial(m, k) = n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 1, 3, 5, 1, 6, 1, 7, 1, 8, 1, 4, 6, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 5, 10, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 10, 19, 1, 6, 15, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 7, 21, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 15, 20, 34
Offset: 1

Views

Author

Rémy Sigrist, Feb 15 2023

Keywords

Comments

In other words, the n-th rows lists the numbers that appear directly above n in Pascal's triangle (A007318).
The n-th row starts with 1, ends with n-1 (provided that n > 1), and contains other values iff n belongs to A006987.

Examples

			Table begins:
  n   n-th row
  --  -------------
   1  1
   2  1
   3  1, 2
   4  1, 3
   5  1, 4
   6  1, 3, 5
   7  1, 6
   8  1, 7
   9  1, 8
  10  1, 4, 6, 9
  11  1, 10
.
For n = 6:
    Pascal's triangle begins as follows:
                     1
                   1   1
                 1   2   1
               1   3   3   1
             1   4   6   4   1
           1   5  10  10   5   1
         1   6  15  20  15   6   1
    we find the value 6 in row 4 below 3 and 3, and in row 6 below 1 and 5,
    so the 6th row contains 1, 3 and 5.
		

Crossrefs

Programs

  • PARI
    See Links section.

A375999 Narayana numbers (A001263), sorted, duplicates removed.

Original entry on oeis.org

1, 3, 6, 10, 15, 20, 21, 28, 36, 45, 50, 55, 66, 78, 91, 105, 120, 136, 153, 171, 175, 190, 196, 210, 231, 253, 276, 300, 325, 336, 351, 378, 406, 435, 465, 490, 496, 528, 540, 561, 595, 630, 666, 703, 741, 780, 820, 825, 861, 903, 946, 990, 1035, 1081, 1128
Offset: 1

Views

Author

Pontus von Brömssen, Sep 06 2024

Keywords

Crossrefs

Programs

  • Python
    from bisect import insort
    from itertools import islice
    def A375999_generator():
        yield 1
        nkN_list = [(3, 2, 3)] # List of triples (n, k, A001263(n, k)), sorted by the last element.
        while 1:
            N0 = nkN_list[0][2]
            yield N0
            while 1:
                n, k, N = nkN_list[0]
                if N > N0: break
                del nkN_list[0]
                insort(nkN_list, (n+1, k, n*(n+1)*N//((n-k+1)*(n-k+2))), key=lambda x:x[2])
                if n == 2*k-1:
                    insort(nkN_list, (n+2, k+1, 4*n*(n+2)*N//(k+1)**2), key=lambda x:x[2])
    def A375999_list(nmax):
        return list(islice(A375999_generator(),nmax))

A376000 Numbers that can be written as a Narayana number (A001263) in at least 2 ways.

Original entry on oeis.org

1, 6, 10, 15, 21, 28, 36, 45, 50, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 196, 210, 231, 253, 276, 300, 325, 336, 351, 378, 406, 435, 465, 490, 496, 528, 540, 561, 595, 630, 666, 703, 741, 780, 820, 825, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1210
Offset: 1

Views

Author

Pontus von Brömssen, Sep 06 2024

Keywords

Comments

All Narayana numbers A001263(n,k) with n != 2*k-1, are terms since A001263(n,k) = A001263(n,n+1-k). In particular, all positive triangular numbers except 3 are terms. Are there any other terms, i.e., is there a number A001263(2*k-1,k), k >= 2, that can be written as a Narayana number in another way? Any such number would also be a term of A376001.

Crossrefs

Programs

  • Python
    from bisect import insort
    from itertools import islice
    def A376000_generator():
        yield 1
        nkN_list = [(3, 2, 3)] # List of triples (n, k, A001263(n, k)), sorted by the last element.
        while 1:
            N0 = nkN_list[0][2]
            c = 0
            while 1:
                n, k, N = nkN_list[0]
                if N > N0:
                    if c >= 2: yield N0
                    break
                central = n==2*k-1
                c += 2-central
                del nkN_list[0]
                insort(nkN_list, (n+1, k, n*(n+1)*N//((n-k+1)*(n-k+2))), key=lambda x:x[2])
                if central:
                    insort(nkN_list, (n+2, k+1, 4*n*(n+2)*N//(k+1)**2), key=lambda x:x[2])
    def A376000_list(nmax):
        return list(islice(A376000_generator(),nmax))

A062527 Smallest number (>1) which appears at least n times in Pascal's triangle.

Original entry on oeis.org

2, 3, 6, 10, 120, 120, 3003, 3003
Offset: 1

Views

Author

Henry Bottomley, Jul 10 2001

Keywords

Comments

Singmaster's conjecture is that this sequence is finite.

Examples

			a(8)=3003 since 3003 =C(3003,1) =C(3003,3002) =C(78,2) =C(78,76) =C(15,5) =C(15,10) =C(14,6) = C(14,8).
		

Crossrefs

Programs

A210577 Natural numbers equal to the sum of two nontrivial binomial coefficients, sorted, duplicates removed.

Original entry on oeis.org

12, 16, 20, 21, 25, 26, 27, 30, 31, 34, 35, 36, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 70, 71, 72, 73, 75, 76, 77, 80, 81, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 104, 105, 106, 110
Offset: 1

Views

Author

Douglas Latimer, Mar 22 2012

Keywords

Comments

Nontrivial binomial coefficients are C(n,k) with 2 <= k <= n-2.

Examples

			a(1) = 12 since 6 is the lowest nontrivial binomial coefficient and 6+6 = 12.
		

Crossrefs

Two-term sums of members of A006987.
Cf. A007318.

Programs

  • Mathematica
    lim = 110; bc = {}; n = 4; While[c = Select[Binomial[n, Range[2, Floor[n/2]]], # <= lim &]; Length[c] > 0, bc = Join[bc, c]; n++]; bc = Sort[bc]; Select[Union[Flatten[Outer[Plus, bc, bc]]], # <= lim &] (* T. D. Noe, Mar 22 2012 *)
  • PARI
    list(lim)=my(v=List(), t, u=v); for(n=4, sqrtint(2*lim)+1, for(k=2, n\2, t=binomial(n, k); if(t>lim, break, listput(v, t)))); v=vecsort(Vec(v), , 8); for(i=1,#v,for(j=1,i,if(v[i]+v[j]>lim,break,listput(u,v[i]+v[j]))));vecsort(Vec(u),,8) \\ Charles R Greathouse IV, Apr 03 2012

A210578 Natural numbers that can be expressed as the sum of one or two nontrivial binomial coefficients, sorted, duplicates removed.

Original entry on oeis.org

6, 10, 12, 15, 16, 20, 21, 25, 26, 27, 28, 30, 31, 34, 35, 36, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Douglas Latimer, Mar 22 2012

Keywords

Comments

Recall that the nontrivial binomial coefficients are C(n,k), 2 <= k <= n-2.

Examples

			a(1) = 6, since 6 is the lowest nontrivial binomial coefficient.
a(2) = 10, since 10 is the lowest nontrivial binomial coefficient except 6.
a(3) = 12 , since 6 is the lowest nontrivial binomial coefficient and 6+6 = 12 .
		

Crossrefs

This is A006987 combined with two-term sums of members of A006987. Cf. A210577 and A007318 .

Programs

  • Maple
    N:= 200: # to get all terms <= N
    BC:= {}:
    for k from 2 do
       if binomial(k+2,k) > N then break fi;
       for n from k+2 do
         v:= binomial(n,k);
         if v > N then break fi;
         BC:= BC union {v};
       od;
    od:
    A:= BC:
    for i from 1 to nops(BC) do
      A:= A union select(`<=`,map(`+`,BC[1..i],BC[i]),N)
    od:
    sort(convert(A,list)): # Robert Israel, Apr 27 2017
Previous Showing 11-20 of 29 results. Next