cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A320844 Expansion of Product_{k>0} (1-x^p(k)), where p(k) is the number of partitions of k (A000041).

Original entry on oeis.org

1, -1, -1, 0, 1, 0, 0, 0, 1, 0, -1, -1, 1, 1, -1, -2, 2, 2, -1, -2, 0, 1, -1, 0, 1, 2, 0, -2, -2, 2, -1, 0, 1, 2, -1, -1, 0, 2, -3, -2, 1, 3, -1, 0, 1, 3, -3, -4, 0, 4, 1, -3, 1, 2, -1, -4, -1, 5, 2, -4, 0, 3, 1, -3, -1, 0, 1, -3, 1, 3, 3, -2, -2, -2, 1, -1, 1, 1, 3, -3
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2018

Keywords

Crossrefs

Convolution inverse of A007279.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1-x^NumberOfPartitions(k): k in [1..100]]))); // G. C. Greubel, Oct 27 2018
  • Mathematica
    CoefficientList[Series[Product[1 - x^PartitionsP[k], {k, 1, 120}], {x, 0, 100}], x] (* G. C. Greubel, Oct 27 2018 *)
  • PARI
    x='x+O('x^50); Vec(prod(k=1,50, 1-x^numbpart(k))) \\ G. C. Greubel, Oct 27 2018
    

A280254 Expansion of 1/(1 - Sum_{k>=1} x^p(k)), where p(k) is the number of partitions of k (A000041).

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 26, 50, 95, 180, 343, 652, 1240, 2358, 4484, 8528, 16217, 30840, 58649, 111532, 212101, 403352, 767056, 1458711, 2774031, 5275379, 10032192, 19078230, 36281088, 68995780, 131209344, 249520934, 474514204, 902384123, 1716064761, 3263442024, 6206090863, 11802129022, 22444120219
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 30 2016

Keywords

Comments

Number of compositions (ordered partitions) into partition numbers.

Examples

			a(4) = 7 because we have [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 38; CoefficientList[Series[1/(1 - Sum[x^PartitionsP[k], {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^p(k)).
Previous Showing 11-12 of 12 results.