cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A385306 Expansion of e.g.f. 1/(1 - 2 * sin(x))^(1/2).

Original entry on oeis.org

1, 1, 3, 14, 93, 796, 8343, 103424, 1479993, 24008656, 435364683, 8726775584, 191601310293, 4572794295616, 117871476051423, 3263515787807744, 96591500816346993, 3043368045293138176, 101702692426476460563, 3592948632452749243904, 133794496537591022166093
Offset: 0

Views

Author

Seiichi Manyama, Jun 24 2025

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/Sqrt[1-2Sin[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 09 2025 *)
  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a001147(n) = prod(k=0, n-1, 2*k+1);
    a(n) = sum(k=0, n, a001147(k)*I^(n-k)*a136630(n, k));

Formula

a(n) = Sum_{k=0..n} A001147(k) * i^(n-k) * A136630(n,k), where i is the imaginary unit.
a(n) ~ 2^(n+1) * 3^(n + 1/4) * n^n / (exp(n) * Pi^(n + 1/2)). - Vaclav Kotesovec, Jun 28 2025

A352638 Expansion of e.g.f. 1/(1 - 3*sin(x)).

Original entry on oeis.org

1, 3, 18, 159, 1872, 27543, 486288, 10016619, 235798272, 6244714443, 183756215808, 5947907121879, 210026879004672, 8034293365747743, 330982609573398528, 14609181655918083939, 687820834029346947072, 34407546247054875367443, 1822450167175258689896448
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 17}, Range[0, m]! * CoefficientList[Series[1/(1 - 3*Sin[x]), {x, 0, m}], x]] (* Amiram Eldar, Mar 26 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-3*sin(x))))
    
  • PARI
    a(n) = if(n==0, 1, 3*sum(k=0, (n-1)\2, (-1)^k*binomial(n, 2*k+1)*a(n-2*k-1)));

Formula

a(0) = 1; a(n) = 3 * Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n,2*k+1) * a(n-2*k-1).
a(n) ~ n! / (2^(3/2) * arcsin(1/3)^(n+1)). - Vaclav Kotesovec, Mar 26 2022
a(n) = Sum_{k=0..n} 3^k * k! * i^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Jun 25 2025

A193474 Table read by rows: The coefficients of the polynomials P(n, x) = Sum{k=0..n} Sum{j=0..k} (-1)^j * 2^(-k) * binomial(k, j) * (k-2*j)^n * x^(n-k).

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 6, 0, 1, 0, 24, 0, 8, 0, 0, 120, 0, 60, 0, 1, 0, 720, 0, 480, 0, 32, 0, 0, 5040, 0, 4200, 0, 546, 0, 1, 0, 40320, 0, 40320, 0, 8064, 0, 128, 0, 0, 362880, 0, 423360, 0, 115920, 0, 4920, 0, 1, 0, 3628800, 0, 4838400, 0, 1693440, 0, 130560, 0, 512, 0, 0
Offset: 1

Views

Author

Peter Luschny, Aug 01 2011

Keywords

Comments

See A196776 for a row reversed form of this triangle. - Peter Bala, Oct 06 2011

Examples

			The sequence of polynomials P(n, x) begins:
[0]    1;
[1]    1;
[2]    2;
[3]    6 +      x^2;
[4]   24 +    8*x^2;
[5]  120 +   60*x^2 +     x^4;
[6]  720 +  480*x^2 +  32*x^4;
[7] 5040 + 4200*x^2 + 546*x^4 + x^6.
		

Crossrefs

Programs

  • Maple
    A193474_polynom := proc(n,x) local k, j;
    add(add((-1)^j*2^(-k)*binomial(k,j)*(k-2*j)^n*x^(n-k),j=0..k),k=0..n) end: seq(seq(coeff(A193474_polynom(n,x),x,i),i=0..n),n=0..10);
  • Mathematica
    p[n_, x_] := Sum[(-1)^j*2^(-k)*Binomial[k, j]*(k-2*j)^n*x^(n-k), {k, 0, n}, {j, 0, k}]; t[n_, k_] := Coefficient[p[n, x], x, k]; t[0, 0] = 1; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2014 *)

Formula

P(n, 0) = A000142(n).
P(n, 1) = A006154(n).
P(n, 2) = A191277(n).
P(n, i) = A000111(n+1), where i is the imaginary unit.
P(n, i)*2^n = A000828(n+1).
P(n, 1/2)*2^n = A000557(n).
P(n, 1/3)*3^n = A107403(n).
P(n, i/2)*2^n = A007289(n).
G(m, x) = 1/(1 - m*sinh(x)) is the generating function of m^n*P(n, 1/m).
GI(m, x) = 1/(1 - m*sin(x)) is the generating function of m^n*P(n, i/m).
[x^2] P(n+1, x) = A005990(n).

A385367 Expansion of e.g.f. 1/(1 - 2 * arcsinh(x)).

Original entry on oeis.org

1, 2, 8, 46, 352, 3378, 38912, 522702, 8024064, 138586722, 2659565568, 56141737518, 1292851544064, 32253357421842, 866534937329664, 24943658876605902, 765883864848531456, 24985882009464388290, 863077992845681885184, 31469256501815056673070
Offset: 0

Views

Author

Seiichi Manyama, Jun 26 2025

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1-2ArcSinh[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 14 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-2*asinh(x))))

Formula

E.g.f.: 1/(1 - 2 * log(x + sqrt(x^2 + 1))).
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A385371.
a(n) = Sum_{k=0..n} 2^k * k! * i^(n-k) * A385343(n,k), where i is the imaginary unit.
a(n) ~ sqrt(Pi) * (1 + exp(1)) * 2^(n - 1/2) * n^(n + 1/2) / ((exp(1) - 1)^(n+1) * exp(n/2)). - Vaclav Kotesovec, Jun 27 2025

A352639 Expansion of e.g.f. exp(2*sin(x)).

Original entry on oeis.org

1, 2, 4, 6, 0, -46, -192, -266, 1792, 14114, 34816, -171930, -2027520, -6522382, 34750464, 496296022, 1748500480, -12731696062, -186550845440, -617309234490, 7292215885824, 99199654760978, 248883934396416, -5836506132182090, -69729013345550336
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 24}, Range[0, m]! * CoefficientList[Series[Exp[2*Sin[x]], {x, 0, m}], x]] (* Amiram Eldar, Mar 26 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(2*sin(x))))
    
  • PARI
    a(n) = if(n==0, 1, 2*sum(k=0, (n-1)\2, (-1)^k*binomial(n-1, 2*k)*a(n-2*k-1)));

Formula

a(0) = 1; a(n) = 2 * Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n-1,2*k) * a(n-2*k-1).
a(n) = Sum_{k=0..n} 2^k * i^(n-k) * A136630(n,k), where i is the imaginary unit. - Seiichi Manyama, Feb 18 2025
Previous Showing 11-15 of 15 results.