A318123
a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} lcm(a(k), a(n-k-2)).
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 11, 22, 42, 90, 165, 364, 710, 1586, 2885, 6288, 12546, 28686, 55406, 130284, 261016, 555716, 1149559, 2552096, 5429610, 11510594, 23650462, 54063580, 109053128, 262968892, 501771275, 1192348336, 2635608642, 5766609158, 11935917602, 28867050172, 58702673480
Offset: 0
-
a[0] = a[1] = 1; a[n_] := a[n] = Sum[LCM[a[k], a[n - k - 2]], {k, 0, n - 2}]; Table[a[n], {n, 0, 36}]
A354737
a(0) = a(1) = 1; a(n) = n * Sum_{k=0..n-2} a(k) * a(n-k-2).
Original entry on oeis.org
1, 1, 2, 6, 20, 80, 336, 1568, 7584, 39312, 210080, 1180256, 6813312, 40890304, 251528704, 1597332480, 10376040448, 69259146752, 472084038144, 3295588345344, 23459477468160, 170610216311808, 1263629972183040, 9543419750909952, 73322350509367296, 573544008429363200
Offset: 0
-
a[0] = a[1] = 1; a[n_] := a[n] = n Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
nmax = 25; A[] = 0; Do[A[x] = 1 + x + 2 x^2 A[x]^2 + 2 x^3 A[x] D[A[x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A354738
a(0) = a(1) = 1; a(n) = (n-1) * Sum_{k=0..n-2} a(k) * a(n-k-2).
Original entry on oeis.org
1, 1, 1, 4, 9, 40, 135, 636, 2688, 13552, 65871, 355520, 1906740, 10963656, 63468171, 386532944, 2383820820, 15294890848, 99626199832, 670333562352, 4583302104450, 32213942456000, 230118463761795, 1683896120829384, 12520330728001670, 95110075114630416
Offset: 0
-
a[0] = a[1] = 1; a[n_] := a[n] = (n - 1) Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
nmax = 25; A[] = 0; Do[A[x] = 1 + x + x^2 A[x]^2 + 2 x^3 A[x] D[A[x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A367259
G.f. satisfies A(x) = 1 + x*A(x)^3 * (1 + x*A(x))^2.
Original entry on oeis.org
1, 1, 5, 27, 169, 1138, 8061, 59188, 446455, 3438863, 26935372, 213883631, 1717852129, 13931065117, 113913095218, 938154381748, 7774936633411, 64791892224825, 542598513709481, 4564001359135661, 38541714429405304, 326640923339410701
Offset: 0
-
A367259 := proc(n)
add(binomial(3*k+(n-k)+1,k) * binomial(2*k,n-k) / (3*k+(n-k)+1),k=0..n) ;
end proc:
seq(A367259(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
a(n, s=2, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));
A378320
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(2*n-2*r+k,r) * binomial(r,n-r)/(2*n-2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 2, 0, 1, 4, 6, 6, 3, 0, 1, 5, 10, 13, 11, 6, 0, 1, 6, 15, 24, 27, 22, 11, 0, 1, 7, 21, 40, 55, 57, 44, 22, 0, 1, 8, 28, 62, 100, 124, 121, 90, 44, 0, 1, 9, 36, 91, 168, 241, 278, 258, 187, 90, 0, 1, 10, 45, 128, 266, 432, 570, 620, 555, 392, 187, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 3, 6, 10, 15, 21, ...
0, 2, 6, 13, 24, 40, 62, ...
0, 3, 11, 27, 55, 100, 168, ...
0, 6, 22, 57, 124, 241, 432, ...
0, 11, 44, 121, 278, 570, 1077, ...
-
T(n, k, t=0, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A105847
Inverse binomial transform of number triangle A105632.
Original entry on oeis.org
1, 0, 1, 1, -1, 1, 0, 3, -2, 1, 2, -3, 6, -3, 1, 0, 9, -10, 10, -4, 1, 5, -9, 26, -22, 15, -5, 1, 0, 29, -42, 59, -40, 21, -6, 1, 14, -29, 108, -121, 115, -65, 28, -7, 1, 0, 99, -174, 308, -276, 202, -98, 36, -8, 1, 42, -99, 450, -620, 734, -546, 329, -140, 45, -9, 1, 0, 351, -726, 1547, -1700, 1540, -980, 506, -192, 55, -10, 1, 132
Offset: 0
Triangle begins
1;
0,1;
1,-1,1;
0,3,-2,1;
2,-3,6,-3,1;
0,9,-10,10,-4,1;
A247171
G.f.: (2*x^2+4*x+3)/((2*x+2)*sqrt(-4*x^3-4*x^2+1))-1/(2*x+2).
Original entry on oeis.org
1, 1, 3, 4, 11, 21, 48, 106, 235, 535, 1203, 2751, 6272, 14392, 33078, 76224, 176043, 407253, 943833, 2190397, 5090371, 11843689, 27586793, 64320191, 150102784, 350586496, 819477792, 1916861350, 4486760870, 10508582130, 24626700888
Offset: 0
-
CoefficientList[Series[(2 x^2 + 4 x + 3) / ((2 x + 2) Sqrt[-4 x^3 - 4 x^2 + 1]) - 1 / (2 x + 2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 22 2014 *)
-
a(n):=if n=0 then 1 else n*sum((binomial(2*k,n-k)*binomial(n-k-1,k-1))/k,k,1,n);
Comments