A367568
a(n) = Product_{k=0..n} (4*k)! / k!^4.
Original entry on oeis.org
1, 24, 60480, 22353408000, 1409672968704000000, 16539333509029163728896000000, 38185078618454141182825889242546176000000, 18043150250179542387558306410182977707728856678400000000, 1796395750154420920494206475343190362781863323574704301041254400000000000
Offset: 0
-
Table[Product[(4*k)!/k!^4, {k, 0, n}], {n, 0, 10}]
Table[Product[Binomial[4*k,k] * Binomial[3*k,k] * Binomial[2*k,k], {k, 0, n}], {n, 0, 10}]
A367569
a(n) = Product_{k=0..n} (5*k)! / k!^5.
Original entry on oeis.org
1, 120, 13608000, 2288430144000000, 699207483978843840000000000, 435858496811697532778806061260800000000000, 597507154003470929939550139366865942134606725120000000000000, 1898554530971015145216561379837863419725314413457243266261094236160000000000000000
Offset: 0
-
Table[Product[(5*k)!/k!^5, {k, 0, n}], {n, 0, 10}]
Table[Product[Binomial[5*k,k] * Binomial[4*k,k] * Binomial[3*k,k] * Binomial[2*k,k], {k, 0, n}], {n, 0, 10}]
A367570
a(n) = Product_{k=0..n} (6*k)! / k!^6.
Original entry on oeis.org
1, 720, 5388768000, 739474163011584000000, 2400828978003787120431882240000000000, 213271990853093812884314351984207293234859212800000000000, 569474121824212834327144127568532894901251393782268174537457286512640000000000000
Offset: 0
-
Table[Product[(6*k)!/k!^6, {k, 0, n}], {n, 0, 10}]
Table[Product[Binomial[6*k,k] * Binomial[5*k,k] * Binomial[4*k,k] * Binomial[3*k,k] * Binomial[2*k,k], {k, 0, n}], {n, 0, 10}]
A367571
a(n) = Product_{k=0..n} (7*k)! / k!^7.
Original entry on oeis.org
1, 5040, 3432645216000, 626489905645044080640000000, 41646279370357699257014919153469440000000000000, 1200992054275801322636044235924808416678612164215512865177600000000000000
Offset: 0
-
Table[Product[(7*k)!/k!^7, {k, 0, n}], {n, 0, 10}]
Table[Product[Binomial[7*k,k] * Binomial[6*k,k] * Binomial[5*k,k] * Binomial[4*k,k] * Binomial[3*k,k] * Binomial[2*k,k], {k, 0, n}], {n, 0, 10}]
A324566
a(n) = Product_{i=0..n, j=0..n} (binomial(2*i, i) + binomial(2*j, j)).
Original entry on oeis.org
2, 72, 2709504, 15637972132823040, 2676716427588188879089135779840000, 2844659827809077182003221596452154340416256794895644098560000
Offset: 0
-
Table[Product[Binomial[2*i, i] + Binomial[2*j, j], {i, 0, n}, {j, 0, n}], {n, 0, 7}]
A338550
Number of binary trees of height n such that the number of nodes at depth d equals d+1 for every d = 0..n.
Original entry on oeis.org
1, 1, 4, 60, 3360, 705600, 558835200, 1678182105600, 19198403288064000, 840083731079104512000, 141100463472046393835520000, 91242050302344912388163665920000, 227753296409896438988240405704212480000, 2199573010737856838816729366169572868096000000, 82356764599728553816070191604819734458909327360000000
Offset: 0
-
Table[Product[Binomial[2k,k+1],{k,n}],{n,0,14}] (* or *)
Table[2^(n^2+n-1/24)Glaisher^(3/2)Pi^(-1/4-n/2)BarnesG[3/2+n]Gamma[1+n]/(Exp[1/8]BarnesG[3+n]),{n,0,14}] (* Stefano Spezia, Nov 02 2020 *)
A324567
a(n) = Product_{i=0..n, j=0..n} (binomial(2*i, j) + binomial(2*j, i)).
Original entry on oeis.org
2, 8, 2400, 1247616000, 47391629172572160000, 5433273487668074503912921497600000000, 84476763043100284572577776893541858819157327099409203200000000
Offset: 0
-
Table[Product[Binomial[2*i, j] + Binomial[2*j, i], {i, 0, n}, {j, 0, n}], {n, 0, 7}]
A324568
a(n) = Sum_{i=0..n, j=0..n} (binomial(2*i, j) + binomial(2*j, i)).
Original entry on oeis.org
2, 8, 32, 124, 482, 1882, 7380, 29036, 114530, 452638, 1791638, 7100430, 28167986, 111837902, 444351292, 1766536044, 7026526226, 27960911422, 111308958942, 443258277254, 1765690504666, 7035402933402, 28039342445582, 111773962249054, 445654589001882
Offset: 0
-
R:= 2: r:= 2;
for n from 1 to 30 do
v:= 2*binomial(2*n,n) + 2*add(binomial(2*n,j),j=0..n-1) + 2*add(binomial(2*j,n),j=ceil(n/2) .. n-1);
r:= r+v;
R:= R,r;
od:
R; # Robert Israel, Mar 02 2025
-
Table[Sum[Binomial[2*i, j] + Binomial[2*j, i], {i, 0, n}, {j, 0, n}], {n, 0, 30}]
A371646
a(n) = Product_{k=0..n} binomial(n^3, k^3).
Original entry on oeis.org
1, 1, 8, 59942025, 239830737497318918172122578944, 788243862228623056807478850630904903414781894638966172447366478063616699218750
Offset: 0
-
Table[Product[Binomial[n^3, k^3], {k, 0, n}], {n, 0, 6}]
A374891
Obverse convolution (1)**A000984; see Comments.
Original entry on oeis.org
2, 6, 42, 882, 62622, 15843366, 14655113550, 50311004817150, 647552943001537650, 31484671641677762080650, 5817013478501458288734652050, 4103513269179719224996951799587650, 11096544131445222000310082187517540861050
Offset: 0
-
s[n_] := 1; t[n_] := Binomial[2 n, n];
u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
Table[u[n], {n, 0, 20}]
Comments