cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A068957 Number of prime divisors of n^n - (n-1)^(n-1), counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 3, 2, 4, 3, 2, 1, 2, 3, 4, 2, 2, 3, 3, 4, 9, 4, 2, 2, 5, 4, 6, 3, 6, 4, 4, 2, 6, 7, 6, 4, 3, 4, 8, 6, 2, 7, 4, 7, 12, 6, 4, 5, 5, 7, 9, 5, 5, 6, 2, 5, 10, 4, 6, 5, 5, 3, 9, 4, 4, 2, 3, 4, 9, 4, 6, 4, 5, 7, 9, 13, 8, 4, 2, 5, 7
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 11 2002

Keywords

Examples

			A007781(14) = 10809131718965763 = 3 * 61^2 * 968299894201, therefore a(14) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[ Apply[ Plus, Transpose[ FactorInteger[n^n - (n - 1)^(n - 1)]] [[ -1]]], {n, 2, 52}]

Formula

a(n) = A001222(A007781(n)).

Extensions

Edited and extended by Robert G. Wilson v, Mar 15 2002
a(53)-a(86) from Amiram Eldar, Feb 06 2020

A114654 Discriminant of the polynomial x^n + x + 1.

Original entry on oeis.org

1, -3, -31, 229, 3381, -43531, -870199, 15953673, 404197705, -9612579511, -295311670611, 8630788777645, 311791207040509, -10809131718965763, -449005897206417391, 18008850183328692241, 845687005960046315793, -38519167813410200811247
Offset: 1

Views

Author

T. D. Noe, Dec 21 2005

Keywords

Comments

Except for the sign, the sequence alternates between the sum and difference of consecutive terms of A000312. x^2+x+1 divides x^n+x+1 for n=2 (mod 3).

References

  • Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.

Crossrefs

Cf. A000312 (n^n), A007781 (n^n - (n-1)^(n-1)), A056788 (n^n + (n-1)^(n-1)), A086797 (discriminant of the polynomial x^n-x-1).

Programs

  • Mathematica
    Table[Discriminant[x^n + x + 1, x], {n, 0, 100}] (* Artur Jasinski, Oct 12 2007 *)
  • PARI
    a(n) = poldisc(x^n+x+1); \\ Michel Marcus, Aug 28 2020

Formula

for n>1, a(n) = (n^n + (-1)^(n-1) * (n-1)^(n-1)) * (-1)^floor(n/2).
a(n) = (Cos[Pi n/2]+Sin[Pi n/2])(n^n)+(Cos[Pi(n+1)/2]+Sin[Pi(n+1)/2])(n+1)^(n+1). - Artur Jasinski, Oct 12 2007
Previous Showing 11-12 of 12 results.