cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 79 results. Next

A270792 The prime/nonprime compound sequence ABA.

Original entry on oeis.org

7, 13, 23, 37, 61, 73, 101, 107, 139, 181, 197, 239, 269, 281, 313, 373, 419, 433, 467, 499, 521, 577, 613, 653, 719, 751, 761, 811, 823, 853, 977, 1013, 1051, 1069, 1163, 1187, 1237, 1289, 1307, 1373, 1439, 1453, 1549, 1559, 1583
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2016

Keywords

Crossrefs

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Programs

  • Maple
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622.  - N. J. A. Sloane, Mar 30 2016

A270794 The prime/nonprime compound sequence BAA.

Original entry on oeis.org

6, 9, 18, 26, 45, 57, 81, 91, 112, 143, 165, 203, 228, 244, 267, 303, 345, 354, 411, 437, 454, 495, 530, 564, 623, 668, 687, 714, 728, 749, 856, 893, 931, 959, 1032, 1054, 1104, 1158, 1185, 1233, 1268, 1298, 1372, 1392, 1425, 1445, 1539, 1672, 1698, 1714, 1742, 1773, 1802, 1886, 1914, 1966, 2031, 2050, 2104
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2016

Keywords

Crossrefs

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Programs

  • Maple
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622.  - N. J. A. Sloane, Mar 30 2016

A270796 The prime/nonprime compound sequence BBA.

Original entry on oeis.org

8, 10, 15, 20, 27, 32, 38, 40, 49, 58, 63, 72, 78, 82, 88, 99, 110, 114, 121, 125, 129, 140, 146, 155, 166, 172, 175, 183, 185, 189, 212, 217, 225, 230, 245, 248, 258, 265, 272, 279, 289, 292, 306, 309, 315, 319, 334, 355, 360, 362, 368, 375, 377, 393, 402, 408, 416, 420, 427, 435, 438, 452, 473, 478, 482, 486, 507
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2016

Keywords

Crossrefs

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Programs

  • Maple
    # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622.  - N. J. A. Sloane, Mar 30 2016

A320633 Composite numbers whose prime indices are also composite.

Original entry on oeis.org

49, 91, 133, 161, 169, 203, 247, 259, 299, 301, 329, 343, 361, 371, 377, 427, 437, 481, 497, 511, 529, 551, 553, 559, 611, 623, 637, 667, 679, 689, 703, 707, 721, 749, 791, 793, 817, 841, 851, 893, 917, 923, 931, 949, 959, 973, 989, 1007, 1027, 1043, 1057
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of terms begins:
   49 = prime(4)^2
   91 = prime(4)*prime(6)
  133 = prime(4)*prime(8)
  161 = prime(4)*prime(9)
  169 = prime(6)^2
  203 = prime(4)*prime(10)
  247 = prime(6)*prime(8)
  259 = prime(4)*prime(12)
  299 = prime(6)*prime(9)
  301 = prime(4)*prime(14)
  329 = prime(4)*prime(15)
  343 = prime(4)^3
  361 = prime(8)^2
  371 = prime(4)*prime(16)
  377 = prime(6)*prime(10)
  427 = prime(4)*prime(18)
  437 = prime(8)*prime(9)
  481 = prime(6)*prime(12)
  497 = prime(4)*prime(20)
  511 = prime(4)*prime(21)
  529 = prime(9)^2
  551 = prime(8)*prime(10)
  553 = prime(4)*prime(22)
  559 = prime(6)*prime(14)
  611 = prime(6)*prime(15)
  623 = prime(4)*prime(24)
  637 = prime(4)^2*prime(6)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1000],And[OddQ[#],!PrimeQ[#],And@@Not/@PrimeQ/@PrimePi/@First/@FactorInteger[#]]&]

A330943 Matula-Goebel numbers of singleton-reduced rooted trees.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 13, 14, 16, 18, 19, 21, 24, 26, 28, 32, 34, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 61, 63, 64, 68, 72, 73, 74, 76, 78, 82, 84, 86, 89, 91, 96, 98, 101, 102, 104, 106, 107, 108, 111, 112, 114, 117, 119, 122, 126, 128, 129, 131
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2020

Keywords

Comments

These trees are counted by A330951.
A rooted tree is singleton-reduced if no non-leaf node has all singleton branches, where a rooted tree is a singleton if its root has degree 1.
The Matula-Goebel number of a rooted tree is the product of primes of the Matula-Goebel numbers of its branches. This gives a bijective correspondence between positive integers and unlabeled rooted trees.
A prime index of n is a number m such that prime(m) divides n. A number belongs to this sequence iff it is 1 or its prime indices all belong to this sequence but are not all prime.

Examples

			The sequence of all singleton-reduced rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   7: ((oo))
   8: (ooo)
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  19: ((ooo))
  21: ((o)(oo))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  32: (ooooo)
  34: (o((oo)))
  36: (oo(o)(o))
  37: ((oo(o)))
		

Crossrefs

The series-reduced case is A291636.
Unlabeled rooted trees are counted by A000081.
Numbers whose prime indices are not all prime are A330945.
Singleton-reduced rooted trees are counted by A330951.
Singleton-reduced phylogenetic trees are A000311.
The set S of numbers whose prime indices do not all belong to S is A324694.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mgsingQ[n_]:=n==1||And@@mgsingQ/@primeMS[n]&&!And@@PrimeQ/@primeMS[n];
    Select[Range[100],mgsingQ]

A236542 Array T(n,k) read along descending antidiagonals: row n contains the primes with n steps in the prime index chain.

Original entry on oeis.org

2, 7, 3, 13, 17, 5, 19, 41, 59, 11, 23, 67, 179, 277, 31, 29, 83, 331, 1063, 1787, 127, 37, 109, 431, 2221, 8527, 15299, 709, 43, 157, 599, 3001, 19577, 87803, 167449, 5381, 47, 191, 919, 4397, 27457, 219613, 1128889, 2269733, 52711
Offset: 1

Views

Author

R. J. Mathar, Jan 28 2014

Keywords

Comments

Row n contains the primes A000040(j) for which A049076(j) = n.

Examples

			The array starts:
    2,    7,   13,   19,   23,   29,   37,   43,   47,   53,...
    3,   17,   41,   67,   83,  109,  157,  191,  211,  241,...
    5,   59,  179,  331,  431,  599,  919, 1153, 1297, 1523,...
   11,  277, 1063, 2221, 3001, 4397, 7193, 9319,10631,12763,...
   31, 1787, 8527,19577,27457,42043,72727,96797,112129,137077,...
		

Crossrefs

Cf. A007821 (row 1), A049078 (row 2), A049079 (row 3), A007097 (column 1), A058010 (diagonal), A057456 - A057457 (columns), A135044, A236536.

Programs

  • Maple
    A236542 := proc(n,k)
        option remember ;
        if n = 1 then
            A007821(k) ;
        else
            ithprime(procname(n-1,k)) ;
        end if:
    end proc:
    for d from 2 to 10 do
        for k from d-1 to 1 by -1 do
                printf("%d,",A236542(d-k,k)) ;
        end do:
    end do:
  • Mathematica
    A007821 = Prime[Select[Range[15], !PrimeQ[#]&]];
    T[n_, k_] := T[n, k] = If[n == 1, If[k <= Length[A007821], A007821[[k]], Print["A007821 must be extended"]; Abort[]], Prime[T[n-1, k]]];
    Table[T[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 16 2020 *)

Formula

T(1,k) = A007821(k).
T(n,k) = prime( T(n-1,k) ), n>1 .

A331488 Number of unlabeled lone-child-avoiding rooted trees with n vertices and more than two branches (of the root).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 6, 10, 20, 36, 70, 134, 263, 513, 1022, 2030, 4076, 8203, 16614, 33738, 68833, 140796, 288989, 594621, 1226781, 2536532, 5256303, 10913196, 22700682, 47299699, 98714362, 206323140, 431847121, 905074333, 1899247187, 3990145833, 8392281473
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2020

Keywords

Comments

Also the number of lone-child-avoiding rooted trees with n vertices and more than two branches.

Examples

			The a(4) = 1 through a(9) = 10 trees:
  (ooo)  (oooo)  (ooooo)   (oooooo)   (ooooooo)    (oooooooo)
                 (oo(oo))  (oo(ooo))  (oo(oooo))   (oo(ooooo))
                           (ooo(oo))  (ooo(ooo))   (ooo(oooo))
                                      (oooo(oo))   (oooo(ooo))
                                      (o(oo)(oo))  (ooooo(oo))
                                      (oo(o(oo)))  (o(oo)(ooo))
                                                   (oo(o(ooo)))
                                                   (oo(oo)(oo))
                                                   (oo(oo(oo)))
                                                   (ooo(o(oo)))
		

Crossrefs

The not necessarily lone-child-avoiding version is A331233.
The Matula-Goebel numbers of these trees are listed by A331490.
A000081 counts unlabeled rooted trees.
A001678 counts lone-child-avoiding rooted trees.
A001679 counts topologically series-reduced rooted trees.
A291636 lists Matula-Goebel numbers of lone-child-avoiding rooted trees.
A331489 lists Matula-Goebel numbers of series-reduced rooted trees.

Programs

  • Mathematica
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],Length[#]>2&&FreeQ[#,{_}]&]],{n,10}]

Formula

For n > 1, a(n) = A001679(n) - A001678(n).

Extensions

a(37)-a(38) from Jinyuan Wang, Jun 26 2020
Terminology corrected (lone-child-avoiding, not series-reduced) by Gus Wiseman, May 10 2021

A320630 Products of primes of nonprime squarefree index.

Original entry on oeis.org

2, 4, 8, 13, 16, 26, 29, 32, 43, 47, 52, 58, 64, 73, 79, 86, 94, 101, 104, 113, 116, 128, 137, 139, 146, 149, 158, 163, 167, 169, 172, 181, 188, 199, 202, 208, 226, 232, 233, 256, 257, 269, 271, 274, 278, 292, 293, 298, 313, 316, 317, 326, 334, 338, 344, 347
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The index of a prime number n is the number m such that n is the m-th prime.

Examples

			The sequence of terms begins:
    2 = prime(1)
    4 = prime(1)^2
    8 = prime(1)^3
   13 = prime(6)
   16 = prime(1)^4
   26 = prime(1)*prime(6)
   29 = prime(10)
   32 = prime(1)^5
   43 = prime(14)
   47 = prime(15)
   52 = prime(1)^2*prime(6)
   58 = prime(1)*prime(10)
   64 = prime(1)^6
   73 = prime(21)
   79 = prime(22)
   86 = prime(1)*prime(14)
   94 = prime(1)*prime(15)
  101 = prime(26)
  104 = prime(1)^3*prime(6)
  113 = prime(30)
  116 = prime(1)^2*prime(10)
  128 = prime(1)^7
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],With[{f=PrimePi/@First/@FactorInteger[#]},And[And@@SquareFreeQ/@f,And@@Not/@PrimeQ/@f]]&]

A330948 Nonprime numbers whose prime indices are not all prime numbers.

Original entry on oeis.org

4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 39, 40, 42, 44, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices of prime indices begins:
   4: {{},{}}
   6: {{},{1}}
   8: {{},{},{}}
  10: {{},{2}}
  12: {{},{},{1}}
  14: {{},{1,1}}
  16: {{},{},{},{}}
  18: {{},{1},{1}}
  20: {{},{},{2}}
  21: {{1},{1,1}}
  22: {{},{3}}
  24: {{},{},{},{1}}
  26: {{},{1,2}}
  28: {{},{},{1,1}}
  30: {{},{1},{2}}
  32: {{},{},{},{},{}}
  34: {{},{4}}
  35: {{2},{1,1}}
  36: {{},{},{1},{1}}
  38: {{},{1,1,1}}
		

Crossrefs

Complement in A330945 of A000040.
Complement in A018252 of A076610.
The restriction to odd terms is A330949.
Nonprime numbers n such that A330944(n) > 0.
Taking odds instead of nonprimes gives A330946.
The number of prime prime indices is given by A257994.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of nonprime index are A320628.
The set S of numbers whose prime indices do not all belong to S is A324694.

Programs

  • Mathematica
    Select[Range[100],!PrimeQ[#]&&!And@@PrimeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&]

A331490 Matula-Goebel numbers of series-reduced rooted trees with more than two branches (of the root).

Original entry on oeis.org

8, 16, 28, 32, 56, 64, 76, 98, 112, 128, 152, 172, 196, 212, 224, 256, 266, 304, 343, 344, 392, 424, 428, 448, 512, 524, 532, 602, 608, 652, 686, 688, 722, 742, 784, 848, 856, 896, 908, 931, 1024, 1048, 1052, 1064, 1204, 1216, 1244, 1304, 1372, 1376, 1444
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2020

Keywords

Comments

We say that a rooted tree is (topologically) series-reduced if no vertex has degree 2.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of its branches. This gives a bijective correspondence between positive integers and unlabeled rooted trees.
Also Matula-Goebel numbers of lone-child-avoiding rooted trees with more than two branches.

Examples

			The sequence of all series-reduced rooted trees with more than two branches together with their Matula-Goebel numbers begins:
    8: (ooo)
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   98: (o(oo)(oo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  196: (oo(oo)(oo))
  212: (oo(oooo))
  224: (ooooo(oo))
  256: (oooooooo)
  266: (o(oo)(ooo))
  304: (oooo(ooo))
  343: ((oo)(oo)(oo))
  344: (ooo(o(oo)))
		

Crossrefs

These trees are counted by A331488.
Unlabeled rooted trees are counted by A000081.
Lone-child-avoiding rooted trees are counted by A001678.
Topologically series-reduced rooted trees are counted by A001679.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Matula-Goebel numbers of series-reduced rooted trees are A331489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    srQ[n_]:=Or[n==1,With[{m=primeMS[n]},And[Length[m]>1,And@@srQ/@m]]];
    Select[Range[1000],PrimeOmega[#]>2&&srQ[#]&]
Previous Showing 31-40 of 79 results. Next