cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 104 results. Next

A337060 E.g.f.: 1 / (1 + x^2/2 + log(1 - x)).

Original entry on oeis.org

1, 1, 2, 8, 46, 324, 2708, 26424, 295272, 3714600, 51929472, 798610416, 13399081584, 243556758912, 4767863027328, 100004300847744, 2237419620187776, 53187370914349440, 1338737435337261312, 35568441673932566016, 994744655047298951424, 29211127285363209561600
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[1/(1 + x^2/2 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = n a[n - 1] + Sum[Binomial[n, k] (k - 1)! a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 21}]

Formula

a(0) = 1; a(n) = n * a(n-1) + Sum_{k=3..n} binomial(n,k) * (k-1)! * a(n-k).

A337061 E.g.f.: 1 / (1 + x^3/3 + log(1 - x)).

Original entry on oeis.org

1, 1, 3, 12, 72, 534, 4818, 50532, 606408, 8182656, 122712912, 2024328096, 36432644400, 710346495312, 14915647605168, 335567743462944, 8052843408926976, 205328108580310656, 5543345188496499840, 157970863597032124416, 4738694884696030305024
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 + x^3/3 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = a[1] = 1; a[n_] := a[n] = n (a[n - 1] + (n - 1) a[n - 2]/2) + Sum[Binomial[n, k] (k - 1)! a[n - k], {k, 4, n}]; Table[a[n], {n, 0, 20}]

Formula

a(0) = a(1) = 1; a(n) = n * (a(n-1) + (n-1) * a(n-2) / 2) + Sum_{k=4..n} binomial(n,k) * (k-1)! * a(n-k).

A346432 a(0) = 1; a(n) = n! * Sum_{k=0..n-1} (n-k+1) * a(k) / k!.

Original entry on oeis.org

1, 2, 14, 144, 1968, 33600, 688320, 16450560, 449326080, 13806858240, 471395635200, 17703899136000, 725338710835200, 32193996432998400, 1538840509503897600, 78808952068374528000, 4305129487814098944000, 249876735246162984960000, 15356385691181506363392000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 17 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = n! Sum[(n - k + 1) a[k]/k!, {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[1/(2 - 1/(1 - x)^2), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^(n - k) StirlingS1[n, k] 2^k HurwitzLerchPhi[1/2, -k, 0]/2, {k, 0, n}], {n, 0, 18}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1 / (2 - 1 / (1 - x)^2))) \\ Michel Marcus, Jul 18 2021

Formula

E.g.f.: 1 / (2 - 1 / (1 - x)^2).
E.g.f.: 1 / (1 - Sum_{k>=1} (k+1) * x^k).
a(0) = 1, a(1) = 2, a(2) = 14; a(n) = 4 * n * a(n-1) - 2 * n * (n-1) * a(n-2).
a(n) = Sum_{k=0..n} (-1)^(n-k) * Stirling1(n,k) * 2^k * A000670(k).
a(n) = n! * A003480(n).

A347949 E.g.f.: 1 / (1 - Sum_{k>=1} x^prime(k) / prime(k)).

Original entry on oeis.org

1, 0, 1, 2, 6, 64, 170, 2988, 14616, 180192, 1934712, 21673200, 300266736, 4220710272, 61785461712, 1003589762784, 17448621367680, 327598207658496, 6279739240655232, 134169095009652480, 2817563310900129024, 64570676279407718400, 1547773850801172960000, 38824156236466815920640
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/Prime[k], {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (k - 1)! Boole[PrimeQ[k]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k-1)! * A010051(k) * a(n-k).

A355285 Expansion of e.g.f. 1 / (1 + x + x^2/2 + x^3/3 + log(1 - x)).

Original entry on oeis.org

1, 0, 0, 0, 6, 24, 120, 720, 7560, 76608, 810432, 9141120, 118015920, 1666336320, 25211774016, 404932155264, 6951992261760, 127203705538560, 2467434718218240, 50477473338494976, 1086707769452699904, 24573149993692615680, 582367494447600583680, 14430857455114783119360
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[1/(1 + x + x^2/2 + x^3/3 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (k - 1)! a[n - k], {k, 4, n}]; Table[a[n], {n, 0, 23}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(1/(1 + x + x^2/2 + x^3/3 + log(1 - x)))) \\ Michel Marcus, Jun 27 2022

Formula

E.g.f.: 1 / (1 - Sum_{k>=4} x^k/k).
a(0) = 1; a(n) = Sum_{k=4..n} binomial(n,k) * (k-1)! * a(n-k).

A355665 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + x^k * log(1 - x)).

Original entry on oeis.org

1, 1, 1, 1, 0, 3, 1, 0, 2, 14, 1, 0, 0, 3, 88, 1, 0, 0, 6, 32, 694, 1, 0, 0, 0, 12, 150, 6578, 1, 0, 0, 0, 24, 40, 1524, 72792, 1, 0, 0, 0, 0, 60, 900, 12600, 920904, 1, 0, 0, 0, 0, 120, 240, 6048, 147328, 13109088, 1, 0, 0, 0, 0, 0, 360, 1260, 43680, 1705536, 207360912
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2022

Keywords

Examples

			Square array begins:
     1,    1,   1,   1,   1,   1, 1, ...
     1,    0,   0,   0,   0,   0, 0, ...
     3,    2,   0,   0,   0,   0, 0, ...
    14,    3,   6,   0,   0,   0, 0, ...
    88,   32,  12,  24,   0,   0, 0, ...
   694,  150,  40,  60, 120,   0, 0, ...
  6578, 1524, 900, 240, 360, 720, 0, ...
		

Crossrefs

Columns k=0..3 give A007840, A052830, A351503, A351504.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n\(k+1), j!*abs(stirling(n-k*j, j, 1))/(n-k*j)!);

Formula

T(0,k) = 1 and T(n,k) = n! * Sum_{j=k+1..n} 1/(j-k) * T(n-j,k)/(n-j)! for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} j! * |Stirling1(n-k*j,j)|/(n-k*j)!.

A368284 Expansion of e.g.f. exp(-2*x) / (1 + log(1 - x)).

Original entry on oeis.org

1, -1, 3, 0, 32, 182, 1882, 20500, 260136, 3701968, 58565360, 1019110848, 19346296752, 397867297136, 8811800026928, 209100451072672, 5292665533921024, 142338738348972672, 4053176346277660288, 121828547313861426176, 3854597854165079424768
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=(-2)^i+sum(j=1, i, (j-1)!*binomial(i, j)*v[i-j+1])); v;

Formula

a(n) = (-2)^n + Sum_{k=1..n} (k-1)! * binomial(n,k) * a(n-k).

A368754 a(n) = (n!)^n * [x^n] * 1/(1 - polylog(n,x)).

Original entry on oeis.org

1, 1, 5, 278, 404768, 28436662624, 151309093659896512, 86745908552613198656020224, 7184659625769578063908866060107907072, 110866279942987479997999976181870531647691458347008, 399488258540989429698770032526869852804662313023226648081962369024
Offset: 0

Views

Author

Alois P. Heinz, Jan 04 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!^n*coeff(series(1/(1-polylog(n, x)), x, n+1), x, n):
    seq(a(n), n=0..10);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)/j^k, j=1..n))
        end:
    a:= n-> n!^n*b(n$2):
    seq(a(n), n=0..10);

Formula

a(n) = (n!)^n*b(n,n) with b(n,k) = Sum_{j=1..n} b(n-j,k)/j^k for n>0, b(0,k) = 1.

A382808 a(n) = Sum_{k=0..n} (|Stirling1(n,k)| * k!)^3.

Original entry on oeis.org

1, 1, 9, 440, 71344, 25826824, 17321581592, 19304140340736, 33142988156751360, 82906630912116006912, 289508760665893747703808, 1364207202603804952193826816, 8438589244471363680258331914240, 66972265137135031645961782287814656, 668922701586813036491303458870218731520
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 05 2025

Keywords

Comments

In general, for m>=1, Sum_{k=0..n} (abs(Stirling1(n,k)) * k!)^m ~ sqrt(2*Pi/m) * n^(m*n + 1/2) / (exp(1) - 1)^(m*n+1). - Vaclav Kotesovec, Apr 05 2025

Crossrefs

Programs

  • Mathematica
    Table[Sum[(Abs[StirlingS1[n, k]] k!)^3, {k, 0, n}], {n, 0, 14}]
    Table[(n!)^3 SeriesCoefficient[1/(1 + Log[1 - x] Log[1 - y] Log[1 - z]), {x, 0, n}, {y, 0, n}, {z, 0, n}], {n, 0, 14}]

Formula

a(n) = (n!)^3 * [(x*y*z)^n] 1 / (1 + log(1 - x) * log(1 - y) * log(1 - z)).
a(n) ~ sqrt(2*Pi/3) * n^(3*n + 1/2) / (exp(1) - 1)^(3*n+1). - Vaclav Kotesovec, Apr 05 2025

A382830 a(n) = Sum_{k=0..n} binomial(n+k-1,k) * |Stirling1(n,k)| * k!.

Original entry on oeis.org

1, 1, 8, 102, 1804, 40890, 1131108, 36948240, 1391945616, 59411849040, 2833582748160, 149347596487056, 8620256620495584, 540775669746661440, 36636074309252234880, 2665704585421541790720, 207329122282259073044736, 17165075378189396045777280, 1507206260097615729874083840
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n + k - 1, k] Abs[StirlingS1[n, k]] k!, {k, 0, n}], {n, 0, 18}]
    Table[n! SeriesCoefficient[1/(1 + Log[1 - x])^n, {x, 0, n}], {n, 0, 18}]

Formula

a(n) = n! * [x^n] 1 / (1 + log(1 - x))^n.
a(n) ~ LambertW(exp(2))^n * n^n / (sqrt(1 + LambertW(exp(2))) * exp(n) * (LambertW(exp(2)) - 1)^(2*n)). - Vaclav Kotesovec, Apr 06 2025
Previous Showing 91-100 of 104 results. Next