A337060
E.g.f.: 1 / (1 + x^2/2 + log(1 - x)).
Original entry on oeis.org
1, 1, 2, 8, 46, 324, 2708, 26424, 295272, 3714600, 51929472, 798610416, 13399081584, 243556758912, 4767863027328, 100004300847744, 2237419620187776, 53187370914349440, 1338737435337261312, 35568441673932566016, 994744655047298951424, 29211127285363209561600
Offset: 0
-
nmax = 21; CoefficientList[Series[1/(1 + x^2/2 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = n a[n - 1] + Sum[Binomial[n, k] (k - 1)! a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 21}]
A337061
E.g.f.: 1 / (1 + x^3/3 + log(1 - x)).
Original entry on oeis.org
1, 1, 3, 12, 72, 534, 4818, 50532, 606408, 8182656, 122712912, 2024328096, 36432644400, 710346495312, 14915647605168, 335567743462944, 8052843408926976, 205328108580310656, 5543345188496499840, 157970863597032124416, 4738694884696030305024
Offset: 0
-
nmax = 20; CoefficientList[Series[1/(1 + x^3/3 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = a[1] = 1; a[n_] := a[n] = n (a[n - 1] + (n - 1) a[n - 2]/2) + Sum[Binomial[n, k] (k - 1)! a[n - k], {k, 4, n}]; Table[a[n], {n, 0, 20}]
A346432
a(0) = 1; a(n) = n! * Sum_{k=0..n-1} (n-k+1) * a(k) / k!.
Original entry on oeis.org
1, 2, 14, 144, 1968, 33600, 688320, 16450560, 449326080, 13806858240, 471395635200, 17703899136000, 725338710835200, 32193996432998400, 1538840509503897600, 78808952068374528000, 4305129487814098944000, 249876735246162984960000, 15356385691181506363392000
Offset: 0
Cf.
A000670,
A001339,
A002866,
A003480,
A007840,
A052555,
A052567,
A136658,
A216794,
A308939,
A346433.
-
a[0] = 1; a[n_] := a[n] = n! Sum[(n - k + 1) a[k]/k!, {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[1/(2 - 1/(1 - x)^2), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) StirlingS1[n, k] 2^k HurwitzLerchPhi[1/2, -k, 0]/2, {k, 0, n}], {n, 0, 18}]
-
my(x='x+O('x^25)); Vec(serlaplace(1 / (2 - 1 / (1 - x)^2))) \\ Michel Marcus, Jul 18 2021
A347949
E.g.f.: 1 / (1 - Sum_{k>=1} x^prime(k) / prime(k)).
Original entry on oeis.org
1, 0, 1, 2, 6, 64, 170, 2988, 14616, 180192, 1934712, 21673200, 300266736, 4220710272, 61785461712, 1003589762784, 17448621367680, 327598207658496, 6279739240655232, 134169095009652480, 2817563310900129024, 64570676279407718400, 1547773850801172960000, 38824156236466815920640
Offset: 0
-
nmax = 23; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/Prime[k], {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (k - 1)! Boole[PrimeQ[k]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
A355285
Expansion of e.g.f. 1 / (1 + x + x^2/2 + x^3/3 + log(1 - x)).
Original entry on oeis.org
1, 0, 0, 0, 6, 24, 120, 720, 7560, 76608, 810432, 9141120, 118015920, 1666336320, 25211774016, 404932155264, 6951992261760, 127203705538560, 2467434718218240, 50477473338494976, 1086707769452699904, 24573149993692615680, 582367494447600583680, 14430857455114783119360
Offset: 0
-
nmax = 23; CoefficientList[Series[1/(1 + x + x^2/2 + x^3/3 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (k - 1)! a[n - k], {k, 4, n}]; Table[a[n], {n, 0, 23}]
-
my(x='x+O('x^30)); Vec(serlaplace(1/(1 + x + x^2/2 + x^3/3 + log(1 - x)))) \\ Michel Marcus, Jun 27 2022
A355665
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + x^k * log(1 - x)).
Original entry on oeis.org
1, 1, 1, 1, 0, 3, 1, 0, 2, 14, 1, 0, 0, 3, 88, 1, 0, 0, 6, 32, 694, 1, 0, 0, 0, 12, 150, 6578, 1, 0, 0, 0, 24, 40, 1524, 72792, 1, 0, 0, 0, 0, 60, 900, 12600, 920904, 1, 0, 0, 0, 0, 120, 240, 6048, 147328, 13109088, 1, 0, 0, 0, 0, 0, 360, 1260, 43680, 1705536, 207360912
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, ...
3, 2, 0, 0, 0, 0, 0, ...
14, 3, 6, 0, 0, 0, 0, ...
88, 32, 12, 24, 0, 0, 0, ...
694, 150, 40, 60, 120, 0, 0, ...
6578, 1524, 900, 240, 360, 720, 0, ...
-
T(n, k) = n!*sum(j=0, n\(k+1), j!*abs(stirling(n-k*j, j, 1))/(n-k*j)!);
A368284
Expansion of e.g.f. exp(-2*x) / (1 + log(1 - x)).
Original entry on oeis.org
1, -1, 3, 0, 32, 182, 1882, 20500, 260136, 3701968, 58565360, 1019110848, 19346296752, 397867297136, 8811800026928, 209100451072672, 5292665533921024, 142338738348972672, 4053176346277660288, 121828547313861426176, 3854597854165079424768
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=(-2)^i+sum(j=1, i, (j-1)!*binomial(i, j)*v[i-j+1])); v;
A368754
a(n) = (n!)^n * [x^n] * 1/(1 - polylog(n,x)).
Original entry on oeis.org
1, 1, 5, 278, 404768, 28436662624, 151309093659896512, 86745908552613198656020224, 7184659625769578063908866060107907072, 110866279942987479997999976181870531647691458347008, 399488258540989429698770032526869852804662313023226648081962369024
Offset: 0
Cf.
A000051,
A000142,
A007840,
A011782,
A036740,
A323339,
A323340,
A336258,
A336259,
A336260,
A336261.
-
a:= n-> n!^n*coeff(series(1/(1-polylog(n, x)), x, n+1), x, n):
seq(a(n), n=0..10);
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)/j^k, j=1..n))
end:
a:= n-> n!^n*b(n$2):
seq(a(n), n=0..10);
A382808
a(n) = Sum_{k=0..n} (|Stirling1(n,k)| * k!)^3.
Original entry on oeis.org
1, 1, 9, 440, 71344, 25826824, 17321581592, 19304140340736, 33142988156751360, 82906630912116006912, 289508760665893747703808, 1364207202603804952193826816, 8438589244471363680258331914240, 66972265137135031645961782287814656, 668922701586813036491303458870218731520
Offset: 0
-
Table[Sum[(Abs[StirlingS1[n, k]] k!)^3, {k, 0, n}], {n, 0, 14}]
Table[(n!)^3 SeriesCoefficient[1/(1 + Log[1 - x] Log[1 - y] Log[1 - z]), {x, 0, n}, {y, 0, n}, {z, 0, n}], {n, 0, 14}]
A382830
a(n) = Sum_{k=0..n} binomial(n+k-1,k) * |Stirling1(n,k)| * k!.
Original entry on oeis.org
1, 1, 8, 102, 1804, 40890, 1131108, 36948240, 1391945616, 59411849040, 2833582748160, 149347596487056, 8620256620495584, 540775669746661440, 36636074309252234880, 2665704585421541790720, 207329122282259073044736, 17165075378189396045777280, 1507206260097615729874083840
Offset: 0
-
Table[Sum[Binomial[n + k - 1, k] Abs[StirlingS1[n, k]] k!, {k, 0, n}], {n, 0, 18}]
Table[n! SeriesCoefficient[1/(1 + Log[1 - x])^n, {x, 0, n}], {n, 0, 18}]
Comments