cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-62 of 62 results.

A334924 G.f.: Sum_{k>=1} x^(k^2*(k + 1)/2) / (1 - x^(k^2*(k + 1)/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, May 16 2020

Keywords

Comments

Number of pentagonal pyramidal numbers (A002411) dividing n.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k^2 (k + 1)/2)/(1 - x^(k^2 (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/3 - 2 = A195055 - 2 = 1.289868... . - Amiram Eldar, Jan 02 2024

A357842 a(n) is the smallest number k for which k and the arithmetic derivative k' (A003415) have exactly n triangular divisors (A000217).

Original entry on oeis.org

2, 27, 18, 72, 612, 1764, 756, 8100, 27000, 97200, 66528, 175500, 93600, 280800, 1731600, 661500, 680400, 3704400, 34177500, 11107800, 16581600, 20065500, 108486000, 102910500, 108353700, 181912500, 314874000, 462672000, 4408236000, 229975200, 2297786400, 672348600, 925041600, 1344697200, 158230800
Offset: 1

Views

Author

Marius A. Burtea, Oct 20 2022

Keywords

Examples

			2 has only the divisor 1 = A000217(1) and 2' = 1 = A000217(1), so a(1) = 2.
27 and 27' = 27 have the divisors 1 = A000217(1), 3 = A000217(2) triangular numbers, so a(2) = 27.
		

Crossrefs

Programs

  • Magma
    tr:=func; f:=func;  a:=[]; for n in [1..30] do k:=2 ; while tr(k) ne n or tr(Floor(f(k))) ne n do k:=k+1; end while; Append(~a,k); end for; a;
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); tridiv[n_] := DivisorSum[n, 1 &, IntegerQ[Sqrt[8*# + 1]] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 2, i}, While[c < len && n < nmax, i = tridiv[n]; If[i <= len && s[[i]] == 0 && tridiv[d[n]] == i, c++; s[[i]] = n]; n++]; s]; seq[10, 10^6] (* Amiram Eldar, Oct 21 2022 *)
  • PARI
    f(n) = sumdiv(n, d, ispolygonal(d, 3)); \\ A007862
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    a(n) = my(k=2); while((f(k)!=n) || (f(ad(k))!=n), k++); k; \\ Michel Marcus, Oct 23 2022
Previous Showing 61-62 of 62 results.