cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A091229 Smallest k such that n+k is irreducible when interpreted as GF(2)[X]-polynomial.

Original entry on oeis.org

2, 1, 0, 0, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

Analogous to A007920.

Crossrefs

Formula

a(n) = A091228(n) - n.

A309877 a(n) is the smallest number k such that the difference between the next prime greater than k and k equals n.

Original entry on oeis.org

1, 0, 8, 7, 24, 23, 90, 89, 118, 117, 116, 115, 114, 113, 526, 525, 524, 523, 888, 887, 1130, 1129, 1338, 1337, 1336, 1335, 1334, 1333, 1332, 1331, 1330, 1329, 1328, 1327, 9552, 9551, 15690, 15689, 15688, 15687, 15686, 15685, 15684, 15683, 19616, 19615, 19614, 19613, 19612, 19611
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2019

Keywords

Examples

			+------+------+-----+
| a(n) | next | gap |
|      | prime|     |
+------+------+-----+
|   1  |   2  |  1  |
|   0  |   2  |  2  |
|   8  |  11  |  3  |
|   7  |  11  |  4  |
|  24  |  29  |  5  |
|  23  |  29  |  6  |
|  90  |  97  |  7  |
|  89  |  97  |  8  |
+------+------+-----+
		

Crossrefs

Programs

  • Maple
    N:= 100:
    A:= Vector(N,-1):
    count:= 0: lastp:= 0:
    while count < N do
      p:= nextprime(lastp);
      newvals:= select(t -> A[t]=-1, [$1..min(p-lastp,N)]);
      count:= count+nops(newvals);
      for k in newvals do A[k]:= p-k od;
      lastp:= p;
    od:
    convert(A,list); # Robert Israel, Aug 23 2019
  • Mathematica
    Table[SelectFirst[Range[0, 20000], NextPrime[#] - # == n &], {n, 1, 50}]
    Module[{nn=20000,d},d=Table[{n,NextPrime[n]-n},{n,0,nn}];Table[SelectFirst[d,#[[2]]==k&],{k,50}]][[;;,1]] (* Harvey P. Dale, Mar 23 2025 *)
  • PARI
    a(n) = my(k=0); while(nextprime(k+1) - k != n, k++); k; \\ Michel Marcus, Aug 21 2019

Formula

a(n) = min {k : A013632(k) = n}.
Previous Showing 21-22 of 22 results.